Monitoring For Detection & Prevention Of Fake Agents

INTRODUCTION
1.1 Project Objective

In the course of doing business, sometimes sensitive data must be handed over to supposedly
trusted third parties. For example, a hospital may give patient records to researchers who will devise
new treatments. Similarly, a company may have partnerships with other companies that require
sharing customer data. Another enterprise may outsource its data processing, so data must be given
to various other companies. We call the owner of the data the distributor and the supposedly trusted
third parties the agents. Our goal is to detect when the distributor’s sensitive data has been leaked

by agents, and if possible to identify the agent that leaked the data.

We consider applications where the original sensitive data cannot be perturbed. Perturbation
is a very useful technique where the data is modified and made “less sensitive” before being handed
to agents. For example, one can add random noise to certain attributes, or one can replace exact

values by ranges.

However, in some cases it is important not to alter the original distributor’s data. For example,
if an outsourcer is doing our payroll, he must have the exact salary and customer bank account
numbers. If medical researchers will be treating patients (as opposed to simply computing
statistics), they may need accurate data for the patients. Traditionally, leakage detection is handled
by watermarking, e.g., a unique code is embedded in each distributed copy. If that copy is later
discovered in the hands of an unauthorized party, the leaker can be identified. Watermarks can be

very useful in some cases, but again, involve some modification of the original data.

Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious. In this
project we study unobtrusive techniques for detecting leakage of a set of objects or records.
Specifically, we study the following scenario: After giving a set of objects to agents, the distributor
discovers some of those same objects in an unauthorized place. (For example, the data may be
found on a web site, or may be obtained through a legal discovery process.) At this point the
distributor can assess the likelihood that the leaked data came from one or more agents, as opposed
to having been independently gathered by other means. Using an analogy with cookies stolen from
a cookie jar, if we catch Freddie with a single cookie, he can argue that a friend gave him the
cookie. But if we catch Freddie with 5 cookies, it will be much harder for him to argue that his
hands were not in the cookie jar. If the distributor sees “enough evidence” that an agent leaked data,

he may stop doing business with him, or may initiate legal proceedings.

Monitoring For Detection & Prevention Of Fake Agents

In this project we develop a model for assessing the “guilt” of agents. We also present
algorithms for distributing objects to agents, in a way that improves our chances of identifying a
leaker. Finally, we also consider the option of adding “fake” objects to the distributed set. Such
objects do not correspond to real entities but appear realistic to the agents. In a sense, the fake
objects acts as a type of watermark for the entire set, without modifying any individual members. If
it turns out an agent was given one or more fake objects that were leaked, then the distributor can be
more confident that agent was guilty.

1.2 Scope of the Project

The software, Site Explorer is designed for management of web sites from a remote location.
This Document plays a vital role in the development life cycle (SDLC) and it describes the
complete requirement of the system. It is meant for use by the developers and will be the basic
during testing phase. Any changes made to the requirements in the future will have to go through

formal change approval process.
1.3 Motivation
1.3.1 Definitions

Data Leakage

A data breach is the unintentional release of secure information to an untrusted environment.

Data Privacy

Information privacy, or data privacy is the relationship between collection and dissemination
of data, technology, the public exception of privacy, and the legal and political issues surrounding
them.Privacy concerns exist wherever personally identifiable information is collected and stored -
in digital form or otherwise. Improper or non-existent disclosure control can be the root cause for

privacy issues.

Fake Records

Records which are false or containing misleading appearance.

Unobstrusive Techniques

Unobtrusive technique is a technique of data collection. They describe methodologies which

2

Monitoring For Detection & Prevention Of Fake Agents

do not involve direct elicitation of data from the research subjects. The unobtrusive approach often

seeks unusual data sources.

Fake

One of the circles or windings of a cable or hawser, as it lies in a coil; a single turn or coil.
To coil (a rope, line, or hawser), by winding alternately in opposite directions, in layers usually of
zigzag or figure of eight form,, to prevent twisting when running out.

Guilt

Guiltis the state of being responsible for the commission of an offense. It is also
a cognitive or an emotional experience that occurs when a person realizes or believes accurately or
not that he or she has violated a moral standard, and bears significant responsibility for that
violation. It is closely related to the concept of remorse.

1.3.2 Abbreviations
ACRONYM ABBREVATION
DLD Data Leakage Detection
GA Guilty Agent
AGM Agent Guilt Model
DA Data Allocation
GMA Guilt Model Analysis
FO Fake Objects
FT Fake Tuple
DR Data Request
EF Explicit Fake Object
SF Simple Fake Object
SR Simple Request
ER Explicit Request
CFO Create Fake Object

IGP
EGP
IGRP
VLSM
PL
LL
NL
TL
SL
PL
AL
NIDS
SSL
HTTP
FTP
DMZ
SMTP
POP3
PP
SQL
EGP
IGMP
MBGP
RIP
MTU

RFC

Monitoring For Detection & Prevention Of Fake Agents
Internet Grouping Protocol
Exterior Gateway Protocol
Interior Gateway Routing Protocol
Variable Length Subnet Masking
Physical Layer
Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer
Network Instruction Detection System
Secure Socket Layer
Hyper Text Transfer Protocol
File Transfer Protocol
Demilitarized Zone
Simple Mail Transfer Protocol
Post Office Protocol version 3
Pre-Pishing
Structured Query Language
Exterior Gateway Protocol
Internet Group Management Protocol
Multiprotocol Extension for BGP
Routing Information Protocol
Maximum Transmission Unit
Request For Comment

4

Monitoring For Detection & Prevention Of Fake Agents

MLD Multicast Listener Discovery

PIM Protocol Independent Multicast

IETF Internet Engineering Task Force

ICMP Internet Control Message Protocol

EIGRP Enhanced Interior Gateway Routing Protocol
oMT Object Modelling Technique

NSFNet National Science Foundation Network
ARPANet Advanced Research Project Agency Network

1.3.3 Model Diagrams

Internet

i

Email Appliance

or

PureMessage for UNIX
or

PureMessage for Email groupware
Microsoft Exchange PureMessage for
Microsoft Exchange

or
PureMessage for
Lotus Domino

Gateway

Figure 1.1 Model Diagram for Email Security Control

Monitoring For Detection & Prevention Of Fake Agents

Central
Surveillance
Office

- _
oy o mp e B

Gas Detection Sensors RS485
é» .

Gas Detsction Sensors

|

Figure 1.2 Model Diagram for Gas Leakage

-

Ny
| \-\ Switchboard Q
Phone Control » 8

Local Mﬁmuam
N Manual‘Control
Remote Router / Hub 8

Administrator #1
8 ‘ Web Control
Remaote Administrator #3

Remote Administrator #2 E

P

Unintenuptible Power Suppty

Local Administrator #2

o2

Figure 1.3 Model Diagram for IP-P3-Demo Leakage

Monitoring For Detection & Prevention Of Fake Agents

1.4 Over view of the Project

Traditionally, leakage detection is handled by watermarking, e.g., a unique code is embedded
in each distributed copy. If that copy is later discovered in the hands of an unauthorized party, the
leaker can be identified. Watermarks can be very useful in some cases, but again, involve some
modification of the original data. Furthermore, watermarks can sometimes be destroyed if the data

recipient is malicious.

In this project we study unobtrusive techniques for detecting leakage of a set of objects or
records. Specifically we study the following scenario: After giving a set of objects to agents, the
distributor discovers some of those same objects in an unauthorized place. (For example, the data
may be found on a web site, or may be obtained through a legal discovery process.) At this point the
distributor can assess the likelihood that the leaked data came from one or more agents, as opposed
to having been independently gathered by other means. Using an analogy with cookies stolen from
a cookie jar, if we catch Freddie with a single cookie, he can argue that a friend gave him the

cookie.

In this project we develop a model for assessing the “guilt” of agents. We also present
algorithms for distributing objects to agents, in a way that improves our chances of identifying a
leaker. Finally, we also consider the option of adding “fake” objects to the distributed set. Such
objects do not correspond to real entities but appear realistic to the agents. In a sense, the fake
objects acts as a type of watermark for the entire set, without modifying any individual members. If
it turns out an agent was given one or more fake objects that were leaked, then the distributor can be

more confident that agent was guilty

The developer is responsible for:

e Developing the system, which meets the SRS and solving all the requirements of the system?

e Demonstrating the system and installing the system at client's location after the acceptance testing is
successful.

e Submitting the required user manual describing the system interfaces to work on it and also the
documents of the system.

e Conducting any user training that might be needed for using the system. Maintaining the system for

a period of one year after installation.

Monitoring For Detection & Prevention Of Fake Agents

LITERATURE SUREVEY

2.1 Introduction

Literature survey is the most important step in software development process. Before
developing the tool it is necessary to determine the time factor, economy n company strength. Once
these things r satisfied, ten next steps are to determine which operating system and language can be
used for developing the tool. Once the programmers start building the tool the programmers need
lot of external support. This support can be obtained from senior programmers, from book from
websites. Before building the system the above consideration r taken into account for developing

the proposed system.

We have to analysis the “Monitoring for Detection & Prevention of Fake Agents (Data

leakage Detection)

To compute this Pr{Gi|S}, we need an estimate for the probability that values in S can be
“guessed” by the target. For instance, say some of the objects in S are emails of individuals. We can
conduct an experiment and ask a person with approximately the expertise and resources of the
target to find the email of say 100 individuals. If this person can find say 90 emails, then we can
reasonably guess that the probability of finding one email is 0.9. On the other hand, if the objects in
question are bank account numbers, the person may only discover say 20, leading to an estimate of
0.2. We call this estimate pt, the probability that object t can be guessed by the target.

Probability pt is analogous to the probabilities used in designing fault-tolerant systems. That
is, to estimate how likely it is that a system will be operational throughout a given period, we need
the probabilities that individual components will or will not fail. A component failure in our case is

the event that the target guesses an object of S.

The component failure is used to compute the overall system reliability, while we use the
probability of guessing to identify agents that have leaked information. The component failure
probabilities are estimated based on experiments, just as we propose to estimate the pt’s. Similarly,

the component probabilities are usually conservative estimates, rather than exact numbers.

For example, say we use a component failure probability that is higher than the actual
probability, and we design our system to provide a desired high level of reliability. Then we will
know that the actual system will have at least that level of reliability, but possibly higher. In the
same way, if we use pt’s that are higher than the true values, we will know that the agents will be

guilty with at least the computed probabilities. To simplify the formulas that we present in the rest

8

Monitoring For Detection & Prevention Of Fake Agents

of the project, we assume that all T objects have the same pt, which we call p. Our equations can be

easily generalized to diverse pt’s though they become cumbersome to display.

Next, we make two assumptions regarding the relationship among the various leakage
events. The first assumption simply states that an agent’s decision to leak an object is not related to
other objects. We study a scenario where the actions for different objects are related, and we study

how our results are impacted by the different independence assumptions.
2.2 Internal Threats — Intentional or Inadvertent?

According to data compiled from EPIC.org and PerkinsCoie.com, 52% of Data Security
breaches are from internal sources compared to the remaining 48% by external hackers . The
internal noteworthy breaches aspect are of these examined, the figures is percentage that, due to

when the malicious intent is remarkably low, at less than 1%. The corollary of this is that the
level of inadvertent data breach is significant (96%). This is further deconstructed to 46% being due

to employee oversight, and 50% due to poor business process .
2.2.1 Intentional Internal Data Leakage or sabotage

Whilst the data presented suggests the main threat to internal data leakage is from inadvertent
actions, organizations are nevertheless still at risk of intentional unauthorized release of data
information by internal users. The methods by which insiders leak data could be one or many, but
could include mediums such as Remote Access , Instant Messaging, email, Web Mail, Peer-to-peer,

and even File Transfer Protocol. Use of removable media, hard copy, etc is also possible.

Motivations are varied, but include reason such as corporate espionage, financial reward, or
a grievance with their employer. The latter appears to be the most likely. According to a study
conducted by The US Secret Service and CERT, 92% of insider related offences was following a
negative work-related event”. Of these, the offenders were predominantly male (96%) and the
these attacks related not just to data, of the attacks studied, 49% included the objective of
“sabotaging information and/or data”. An example of such an attack is described in the
USSS/CERT study as follows, note how the characteristics match the finding above (highlighted in
bold):

2.2.2 Unintentional internal Data Leakage

As discussed earlier in this section, a significant amount of data security breaches are due to
either employee oversight or poor business process. This presents a challenge for business as the

solution to these problem will be fat greater than simply deploying a secure content management
9

Monitoring For Detection & Prevention Of Fake Agents

system. Business processes will need to be retrained, and probably re-engineered; personnel will
need to be retrained, and a cultural change may be required with in the organization. These alone
are significant challenges for business. A recent example of what is probably unintentional featured
an Australian employment agency's web site publishing “confidential data including names,
email address and passwords of clients* from its database on the public web site. An additional
embarrassing aspect of this story was the fact that some of the agency's staff made comments
regarding individuals, which were also included.

2.3 Internal Data Leakage Vectors

2.3.1 Instant Messaging / Peer — to — Peer

Many organizations allow employees to access Instant Messaging from their workstations or
laptops, with 2005 estimate suggesting 80% of large companies in the US having some form of
Instant Messaging. This includes product such as MSN Messenger, Skype, AOL, Google Talk,
ICQ, and numerous others. Many of the clients available (and all of those mentioned here) are
capable of file transfer. It would be a simple process for an individual to send a confidential
document (such as an Excel file containing sensitive pricing or financial data) to a third party.

Equally a user could divulge confidential information in an Instant Messaging chat Session.

Instant Messaging is also increasingly becoming a vector for Malware. For example the
highly popular Skype has been targeted in recent times. Recent examples of malware targeting
Skype include W32/Pykse.worm.b, W32/Skipi.A and W32.Pykpa.D.

Trusted” zane

3 Flrowall allows
oulbound HTTR
traffio untouched 'Jl

on Port 80

4. Extemal user
rocuives fite via
Ievstant Mesosging flle
ronsfer

machine
axtama
Maossaging

Figure 2.3.1 Instant Messaging Data Leakage Vector

10

Monitoring For Detection & Prevention Of Fake Agents

Peer — to — Peer (P2P) also presents presents a significant threat to data confidentiality.
Popular P2P clients include eDonkey and Bit Torrent with the latter appearing to have between 50
and 75% share of global P2P traffic. It has recently been described as “new national security risk”
by Retired General Wesley K. Clark, who is a board member with an organization that scans
through peer-to-peer networks for confidential or sensitive data. He commented “We found more
than 200 classified government documents in a few hours search over P2P networks” and “We
found everything from Pentagon network server secrets to other sensitive information on P2P

networks that hackers dream about”.

A few moments consideration regarding the implications of these findings will yield the issue
of potential widespread distribution and availability of the data. The number of potential users on
P2P networks that could access the confidential or sensitive data is enormous.

2.3.2 Email

Traditional email clients, such as Microsoft Outlook, Lotus Notes, Eudora, etc. are ubiquitous
within organizations. An internal user with the motivation could email a confidential document to
an unauthorized individual as an attachment. They may also choose to compress and / or encrypt the
file, or embed it within other files in order to disguise its presence. Steganography may also be
utilized for this purpose. Alternatively, instead of attaching a document, text could be copied into

the email message body.

Figure 2.3.2 Email Data Leakage Vector

Email also represents a vector for inadvertent disclosure due to employee oversight or poor
business process. An employee could attach the wrong file inadvertently, select the wrong recipient

in the email, or even be tricked into sending a document through social engineering.

11

Monitoring For Detection & Prevention Of Fake Agents
2.3.3 Web Mail

Web Mail is well entrenched with users. Gmail, Yahoo, and Hotmail are popular examples. It
represents another way for an individual to leak confidential data, either as an attachment or in the
message body. Because Web Mail runs over HTTP/S firewall may allow it through un-inspected as
port 80 or 443 will in most organizations be allowed, and the connection is initiated from an internal

IP address. HTTPS represents a more complex challenge due to the encryption of the traffic.
2.3.4 Web Logs / Wikis

Web Logs (Blogs) are web sites where people can write their thoughts, comments, opinions
on a particular subject. The blog site may be their own, or a public site, which could include the
input from thousands of individuals. Blogs could be used by someone to release confidential
information, simply through entering the information in their blog. However, they would most
likely be able to be tracked, so this is perhaps a less likely medium. A wiki site is “a collaborative
website which can be directly edited by anyone with access to it”, such as wikipedia.org. These
sites are often available to most internet users around the world, and contain the possibility that

confidential information may be added to a wiki page.
2.3.5 Malicious Web Pages

Web sites that are either compromised or are deliberately malicious, present the risk of a
user's computer being infected with malware, simply by visiting a web page containing malicious
code with an OS/Browser that contains vulnerability. The malware could be in the form of a key
logger, Trojan, etc. With a Key logger the risk of data theft is introduced. A recent example was the
Miami Dolphins (host to the NFL super Bowl XLI) web site being compromised. Users with
Vulnerabilities MS06-014 and MS07-004 would download a key logger/backdoor, “providing the

attacker with full access to the compromised computer”.
2.3.6 Hiding in SSL

In order to obfuscate data, a user may attempt to utilize a public proxy service via an SSL

connection (often called Proxy Avoidance).

They access the proxy service via a browser, type in the URL of the site they wish to visit,
and their entire session is then encrypted. A Stateful Packet Inspection firewall will not be able to
examine the data as it will be encrypted. Consequently sensitive information may be leaked through

this medium without detection. For example the Mega proxy SSL VPN provides this capability.

12

Monitoring For Detection & Prevention Of Fake Agents
2.3.7 File Transfer Protocol (FTP)

FTP is included in this discussion as it represents another (perhaps less likely) method for an
individual to release information. It is straightforward to install and configure a basic FTP server
external to the organization (or it may be a special folder on a competitor's FTP server). The
individual then merely has to install a publicly available FTP client and upload the file or files to the
server. This method could even utilize a “dead drop” public FTP site hosted off-shore, where the
third party also has access. As FTP is a popular protocol there is the likelihood it will be allowed
through the firewall. FTP is probably more likely to be used in intentional leakage than
unintentional leakage, due to the fact that uploading a file to an FTP server is generally not
something an average user performs on a daily basis, nor would do inadvertently, as compared to

attaching a file to an email.

1. Inadequate security on
database or network file server
allows inappropniate access to
files or confidential data

W=t

“Trusted” zone

3. Firewall allows

outbound FTP traffic

s 88

4. Extemnal user
downloads file via FTP

2. Malicious employee copies a
sensitive file to their local
machine then uploads to an
extemal FTP server

Figure 2.3.3. FTP Data Leakage Vector

2.3.8 Removable Media / Storage

Symantec reported in March 2007 that “Theft or loss of a computer or data storage medium,

such as a USB memory key, made up 54 percent of all identity theft-related data breaches”.

13

Monitoring For Detection & Prevention Of Fake Agents

This is very cheap removable storage. Copying a large spread sheet or document (say 500MB)
onto a USB key is effortless. The user merely needs to insert the device, open Windows Explorer,
and drag and drop the target files to the device.19 The key is then removed, placed in the employees
pocket and walked out of the building. Alternatively, if the user has a CD or DVD burner on their

laptop or desktop, they can copy the information that way .
2.3.9 Security Classification errors

Security models such as Biba and Bell LaPadula2l1 are intended to provide a framework for
organizations to avoid classified and / or sensitive information being sent to individuals (internally
and externally) without the appropriate security clearance level. It is conceivable that an individual
with Top Secret clearance may either intentionally or inadvertently send a Top Secret document to

another individual with only “Classified” clearance .

2.3.10 Hard copy

If an individual wishes to provide a competitor with sensitive material, and the victim
organization has already implemented electronic countermeasures, it is still possible for the
individual to print out the data and walk out of the office with it in their briefcase. Or, they simply

place it in an envelope and mail it, postage happily paid by the victim organization!
2.3.11 Cameras

Again, if an organization has implemented a range of protective measures, the prevention of
the escape of information is still not guaranteed. A determined individual may choose to take digital
photos (or non-digital for that matter) of their screens. A camera is not even needed nowadays.
Cellular telephones today are likely to have a camera built in, perhaps with up to 2 mega pixels or

more. The photo could then be sent by email or Mobile Messaging directly from the telephone.
2.3.12 Inadequate folder and file protection

If folders and files lack appropriate protection (via user/group privileges etc) then it becomes
easy for a user to copy data from a network drive (for example) to their local system. The user could

then copy that file to removable media, or send it out externally by methods discussed above.
2.3.13 Inadequate database security

Poor SQL programming can leave an organization exposed to SQL injection attacks, or allow

inappropriate information to be retrieved in legitimate database queries. Additionally, organizations

14

Monitoring For Detection & Prevention Of Fake Agents

should not implement broad database privileges22 (i.e. one-size-fits- all) as this can lead to users
accessing confidential information (either intentionally or inadvertently).

2.4 External Threats

According to the Privacy Rights clearinghouse, in 2005 US companies exposed the personal

information of over in 53 million People.
2.4.1 Data theft by intruders

An ever-popular topic in the media is the electronic break-in to an organization by intruders
including the theft of sensitive information. There have been numerous stories in the press of the
theft of credit card information by intruders (note that the press often refer to intruders as hackers).
In 2005 it was estimated that as many as 40 Million credit card numbers were stolen by intruders

from Master Card, VISA, American Express, and other credit card brands.

More recently, Monster.com lost hundreds of thousands (potentially as many as 1.3 million)
of job site users’ IDs to intruders “...hackers grabbed resumes and used information on those

documents to craft personalized "phishing™ e-mails to job seekers.”

This particular event holds significant concern, because resumes contain a significant amount
of information about an individual, including their full name, address, phone number(s),
employment history, interests, and possibly contact details of third parties, such as referees. This
allows for particularly targeted, and if crafted well, believable phishing attacks or perhaps even

more audacious social engineering attacks such as phone calls.
2.4.2 SQL Injection

Web sites that use an SQL server as the back end database may be vulnerable to SQL
Injection attacks, if they fail to correctly parse user input. This is usually a direct result of poor

coding. SQL Injection attacks can result in content within the database being stolen.

For example, a site that does not correctly sanitize user input may cause a server error to
occur. For example: The initial action of the attack could be to enter a single quote within the input
data in a POST element on a website, which may generate an SQL statement as follows:

SELECT info
FROM table

WHERE search = ‘mysearch’’

15

Monitoring For Detection & Prevention Of Fake Agents

Note the additional quote mark. Should the application not sanitize the user input correctly a
server error may occur. This indicates to the attacker that the user input is not being sanitized and
that the site is vulnerable to further exploitation. Further trial and error by the attacker could
eventually reveal table names, field names, and other information, that, once obtained, will allow

them to construct an SQL query within the POST element that yields sensitive data.

2.4.3 Malware

In recent years, the sircam worm would, after infecting a computer, Scan through the My
documents folder and send a file at random out via email to the user's email contacts. If malware is
classified as a zero day threat, and there is no signature yet available, there is a higher likelihood
that the malware will evade inbound gateway protection measures and desktop anti-virus. Once this
malware infects a PC, it may then initiate outbound communications, potentially sending out files
which may contain sensitive data. One aspect to be mindful of is that to a firewall, the traffic is
from an internal source. This is an important point, because most firewalls will not restrict traffic
that is initiated internally via an acceptable protocol.

3| 5. Mail
server

processes
POP3 / SMTP
wraffic

1. Spammer / Virus writer
releases malware into the wild,
eventually it reaches a soft target

e
e
20

7. External user | ‘
2. Firewall allows AV

(specific or random) P
receives attachment :n,b’(;.lf"d F;OP:’
i eenall traffic on Port 110

6. Firewall allows
outbound SMTP
traffic on Port 25

4. Unwitting user recelves
malware which searches for any
file then emails it as an
attachment

Figure 24.1 Malware Data Leakage Vector

As discussed key loggers present a threat as they capture potentially sensitive information,

such as login credentials , personal information, leading to the risk of identity theft.

16

Monitoring For Detection & Prevention Of Fake Agents
2.4.4 Dumpster Diving

Organizations that do not take appropriate care with the destruction of hard copy information
run the risk of confidential information falling into unauthorized hands. Instead of having such
information destroyed securely, businesses may simply throw their confidential information
(perhaps unwittingly) into the rubbish. An attacker may decide to raid the company’s dumpster and
discover this information. This extends to information stored on media such as CDs and DVDs, as

well as printed material. s
2.4.5 Phishing and pre-phising

Phishing sites, and the spam email that solicits visits to them, pose a threat to organizations,
and not just individuals. Phishing spam may be received at peoples’ work email address. Should
they be fooled into visiting the phishing site, then they may lose personal information and or
financial information. It is also possible that a key logger (as previously download the spam
received directs them to a site hosting malware, which could discussed). Phishers have recently
been using the lure of tax returns from various taxation offices as a means to fool people. For
example in Australia, the Australian Tax Office has been targeted by phishers.29 Phishing is of

course a form of social engineering (which will be discussed shortly).

msmm Valid Phishing |
Sites

+ Moving Average

Figure 2.4.2 Phishing site activity
Pre-Phishing

Pre-phishing is emerging as a new method used by phisher, initially as a reconnaissance
attack. Instead of attempting to directly obtain credentials for a financial site, social networking

and email sites are targeted. The attack seeks to obtain username and password combinations, on

17

Monitoring For Detection & Prevention Of Fake Agents

the (likely) assumption that in many cases, users will use the same or similar combinations on other
web sites. The second part of the attack is to conduct a CSS History Hack, where the phishers can
determine whether the user has visited specified sites. The CSS History Hack uses the ‘a:visited’
component in CSS which alters the behavior of links that have been visited. Banking sites visited
by users may be obtained, and the phishers can then visit these and attempt to gain access using the

compromised credential combinations.
2.4.6 Social Engineering

Without going into excessive detail about Social Engineering, some of the common scenarios

and risks include:

— Phone calls to Help Desk from a social engineer claiming to be an employee in another

office, desperate for a password reset.

— Phone calls to unsuspecting employees from social engineer tricking them into sending out
sensitive information. Individuals that would not recognize the fact that the information is sensitive

are prime targets.
2.4.7 Physical Theft

Physical theft of computer systems, laptops, backup tapes, and other media also presents a
data leakage risk to organizations. This may be due to poor physical security at an organization’s
premises or poor security practice by individuals. For instance, a laptop may be left unattended in
the back seat of a car whilst the owner pays for petrol, allowing an opportunistic theft to occur. Also
possible is the mass theft of laptops from within an organizations premises after hours, should the

business fail to secure the laptops overnight.

18

Monitoring For Detection & Prevention Of Fake Agents

Transpoe

Statefud Inspection firowall will aliow 3 direct
connection between external system and
internal host without consideration for the
nature of the traffic, provided the
characteristics 2t the Network layer are
acceplable

Figure 2.4.3 Stateful Inspection Firewall conceptual diagram

Architecture

K ¢
use
Drives

FAX

PDASmartphone e S

Figure 2.4.4 SSL Proxy conceptual diagram

Monitoring For Detection & Prevention Of Fake Agents
SSL Tunnelling Mitigation

In order to obfuscate the sending of data, a more technically savvy individual may choose to
create an SSL tunnel in which to send their data. As SSL data is normalized, it is very difficult for
many firewalls and security appliances to detect the nature of the data in the message. There are a
small number of products that can inspect SSL traffic. This is achieved by a device acting as an SSL
proxy. Please refer to the diagram below during the explanation of this concept. The client system
initiates an SSL handshake with the Proxy with a GET request for a secure web page. The proxy
then initiates a secure session with the host. The host and the proxy perform a key exchange and the
host issues a certificate to the proxy . The proxy checks the certificate against Certificate
Revocation Lists. It then relays the GET request for the page. The secure server then delivers the
page to the proxy. The proxy decrypts this traffic so then has the clear text of the communication,

and this can be inspected according to defined policies for malware, confidential information, etc.

1 IR
|
P | \\\‘ { @
> | 5 B 6 7 @
X Internet X

Client

SSL Web Server SSL Proxy

Encrypted traffic

i) Clear text traffic

Figure 2.4.5 SSL Proxy conceptual diagram

Alternatively, an organization may consider blocking SSL traffic on port 443 completely, or
via web filtering (see below) as a means to prevent this. However this will obviously prevent users

from acceptable usage, such as online banking, etc, so may not be practical.

Advantages: Will detect encrypted traffic that users are utilizing to bypass other security measures.
Disadvantages: Limited vendors providing this type of solution will involve additional cost.

2.5 Performance Requirements

Performance is measured in terms of the efficiency of the signing and verification modules.
Digital Signature project uses various singing algorithms, which are very fast and reliable. Since it

provides GUI it should generate and perform all the events as specified

20

Monitoring For Detection & Prevention Of Fake Agents

The specific requirement gives the expected behaviour of the System Following are the
requirements of the System:

1. The system will repair any damages occurred in the images by using the concept of segmentation

or sector division.

2. The system can also use for making the blurred images to somehow better visual enhance to

make the appearance called the clarity of the image by neural network concepts.

3. It also performs the edge detection concept for identification of the edges of the image for

removal of blurring.
2.6 Technology Used
2.6.1 Introduction To .Net Framework

The Microsoft .NET Framework is a software technology that is available with several
Microsoft Windows operating systems. It includes a large library of pre-coded solutions to common
programming problems and a virtual machine that manages the execution of programs written
specifically for the framework. The .NET Framework is a key Microsoft offering and is intended to

be used by most new applications created for the Windows platform.

Programs written for the .NET Framework execute in a software environment that manages
the program'’s runtime requirements. Also part of the .NET Framework, this runtime environment is
known as the Common Language Runtime (CLR). The CLR provides the appearance of an
application virtual machine so that programmers need not consider the capabilities of the specific
CPU that will execute the program. The CLR also provides other important services such as
security, memory management, and exception handling. The class library and the CLR together
compose the .NET Framework.

Principal design features
Interoperability

Because interaction between new and older applications is commonly required, the .NET
Framework provides means to access functionality that is implemented in programs that execute
outside the .NET environment. Access to COM components is provided in the
System.Runtime.InteropServices and System.EnterpriseServices namespaces of the framework;

access to other functionality is provided using the P/rInvoke feature.

21

Monitoring For Detection & Prevention Of Fake Agents
Common Runtime Engine

The Common Language Runtime (CLR) is the virtual machine component of the .NET
framework. All .NET programs execute under the supervision of the CLR, guaranteeing certain

properties and behaviours in the areas of memory management, security, and exception handling.
Base Class Library

The Base Class Library (BCL), part of the Framework Class Library (FCL), is a library of
functionality available to all languages using the .NET Framework. The BCL provides classes
which encapsulate a number of common functions, including file reading and writing, graphic

rendering, database interaction and XML document manipulation.
Simplified Deployment

Installation of computer software must be carefully managed to ensure that it does not
interfere with previously installed software, and that it conforms to security requirements. The .NET

framework includes design features and tools that help address these requirements.

Security

The design is meant to address some of the vulnerabilities, such as buffer overflows, that have
been exploited by malicious software. Additionally, .NET provides a common security model for all

applications.
Portability

The design of the .NET Framework allows it to theoretically be platform agnostic, and thus
cross-platform compatible. That is, a program written to use the framework should run without
change on any type of system for which the framework is implemented. Microsoft's commercial
implementations of the framework cover Windows, Windows CE, and the Xbox 360. In addition,
Microsoft submits the specifications for the Common Language Infrastructure (which includes the
core class libraries, Common Type System, and the Common Intermediate Language), the C#
language, and the C++/CLI language to both ECMA and the ISO, making them available as open
standards. This makes it possible for third parties to create compatible implementations of the

framework and its languages on other platforms.

Architecture

22

Monitoring For Detection & Prevention Of Fake Agents

Cc# VB.NET Ju
code code code
Compiler Compiler Compiler
___ -

I l -

Common Language Infrastructure

Figure 2.6.1 Visual overview of the Common Language Infrastructure (CLI)
Common Language Infrastructure

The core aspects of the .NET framework lie within the Common Language Infrastructure,
or CLI. The purpose of the CLI is to provide a language-neutral platform for application
development and execution, including functions for exception handling, garbage collection,
security, and interoperability. Microsoft's implementation of the CLI is called the Common

Language Runtime or CLR.
Assemblies

The intermediate CIL code is housed in .NET assemblies. As mandated by specification,
assemblies are stored in the Portable Executable (PE) format, common on the Windows platform for
all DLL and EXE files. The assembly consists of one or more files, one of which must contain the
manifest, which has the metadata for the assembly. The complete name of an assembly (not to be
confused with the filename on disk) contains its simple text name, version number, culture, and
public key token. The public key token is a unique hash generated when the assembly is compiled,
thus two assemblies with the same public key token are guaranteed to be identical from the point of
view of the framework. A private key can also be specified known only to the creator of the
assembly and can be used for strong naming and to guarantee that the assembly is from the same
author when a new version of the assembly is compiled (required to add an assembly to the Global

Assembly Cache).

23

Monitoring For Detection & Prevention Of Fake Agents
Metadata

All CLI is self-describing through .NET metadata. The CLR checks the metadata to ensure
that the correct method is called. Metadata is usually generated by language compilers but
developers can create their own metadata through custom attributes. Metadata contains information
about the assembly, and is also used to implement the reflective programming capabilities of .NET

Framework.

Class library
Namespaces in the BCL
System
System. CodeDom
System. Collections
System. Diagnostics
System. Globalization
System. 10
System. Resources
System. Text
System.Text.RegularExpressions

Microsoft .NET Framework includes a set of standard class libraries. The class library is
organized in a hierarchy of namespaces. Most of the built in APIs are part of either System.* or
Microsoft.* namespaces. It encapsulates a large number of common functions, such as file reading
and writing, graphic rendering, database interaction, and XML document manipulation, among
others. The .NET class libraries are available to all .NET languages. The .NET Framework class

library is divided into two parts: the Base Class Library and the Framework Class Library.

The Base Class Library (BCL) includes a small subset of the entire class library and is the
core set of classes that serve as the basic API of the Common Language Runtime. The classes in

24

Monitoring For Detection & Prevention Of Fake Agents

mscorlib.dll and some of the classes in System.dll and System.core.dll are considered to be a part of
the BCL. The BCL classes are available in both .NET Framework as well as its alternative

implementations including .NET Compact Framework, Microsoft Silver light and Mono.

The Framework Class Library (FCL) is a superset of the BCL classes and refers to the
entire class library that ships with .NET Framework. It includes an expanded set of libraries,
including Win Forms, ADO.NET, ASP.NET, Language Integrated Query, Windows Presentation
Foundation, Windows Communication Foundation among others. The FCL is much larger in scope

than standard libraries for languages like C++, and comparable in scope to the standard libraries of

Java.

Versions

Microsoft started development on the .NET Framework in the late 1990s originally under the
name of Next Generation Windows Services (NGWS). By late 2000 the first beta versions of .NET

1.0 were released.

:
ses|ey
ainny

gt

0¢

07 YONSURLY 13N

The NET Framework Stack

Figure 2.6.2 .NET Framework stack

25

Monitoring For Detection & Prevention Of Fake Agents

Vers Version Release
ion Number Date
1.0 1.0.3705.0 2002-01-05
1.1 1.1.4322.573 2003-04-01
2.0 2.0.50727.42 2005-11-07
3.0 3.0.4506.30 2006-11-06
3.5 3.5.21022.8 2007-11-09

Table 2.6.1 .NET Version Table
2.6.2 ASP.NET

Server Application Development

Server-side applications in the managed world are implemented through runtime hosts.
Unmanaged applications host the common language runtime, which allows your custom managed
code to control the behavior of the server. This model provides you with all the features of the
common language runtime and class library while gaining the performance and scalability of the

host server.

The following illustration shows a basic network schema with managed code running in
different server environments. Servers such as I1S and SQL Server can perform standard operations

while your application logic executes through the managed code.

Server-Side Managed Code

ASP.NET is the hosting environment that enables developers to use the .NET Framework to
target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete
architecture for developing Web sites and Internet-distributed objects using managed code. Both
Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for

applications, and both have a collection of supporting classes in the .NET Framework.

Active Server Pages.Net

26

Monitoring For Detection & Prevention Of Fake Agents

ASP.NET is a programming framework built on the common language runtime that can be
used on a server to build powerful Web applications. ASP.NET offers several important advantages

over previous Web development models:

« Enhanced Performance. ASP.NET is compiled common language runtime code running
on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early binding,
just-in-time compilation, native optimization, and caching services right out of the box. This
amounts to dramatically better performance before you ever write a line of code.

« World-Class Tool Support. The ASP.NET framework is complemented by a rich toolbox
and designer in the Visual Studio integrated development environment. WYSIWYG editing, drag-
and-drop server controls, and automatic deployment are just a few of the features this powerful tool

provides.

« Power and Flexibility. Because ASP.NET is based on the common language runtime, the
power and flexibility of that entire platform is available to Web application developers. The .NET
Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from
the Web. ASP.NET is also language-independent, so you can choose the language that best applies
to your application or partition your application across many languages. Further, common language
runtime interoperability guarantees that your existing investment in COM-based development is

preserved when migrating to ASP.NET.

e Simplicity. ASP.NET makes it easy to perform common tasks, from simple form
submission and client authentication to deployment and site configuration. For example, the
ASP.NET page framework allows you to build user interfaces that cleanly separate application logic
from presentation code and to handle events in a simple, Visual Basic - like forms processing
model. Additionally, the common language runtime simplifies development, with managed code

services such as automatic reference counting and garbage collection.

« Manageability. ASP.NET employs a text-based, hierarchical configuration system, which
simplifies applying settings to your server environment and Web applications. Because
configuration information is stored as plain text, new settings may be applied without the aid of
local administration tools. This "zero local administration” philosophy extends to deploying
ASP.NET Framework applications as well. An ASP.NET Framework application is deployed to a
server simply by copying the necessary files to the server. No server restart is required, even to
deploy or replace running compiled code.

« Scalability and Availability. ASP.NET has been designed with scalability in mind, with
27

Monitoring For Detection & Prevention Of Fake Agents

features specifically tailored to improve performance in clustered and multiprocessor environments.
Further, processes are closely monitored and managed by the ASP.NET runtime, so that if one
misbehaves (leaks, deadlocks), a new process can be created in its place, which helps keep your

application constantly available to handle requests.

« Customizability and Extensibility. ASP.NET delivers a well-factored architecture that
allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or
replace any subcomponent of the ASP.NET runtime with your own custom-written component.

Implementing custom authentication or state services has never been easier.

« Security. With built in Windows authentication and per-application configuration, you can

be assured that your applications are secure.
Language Support

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual

Basic, and Java Script.
What Is Asp.Net Web Forms?

The ASP.NET Web Forms page framework is a scalable common language runtime

programming model that can be used on the server to dynamically generate Web pages.

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with existing
pages), the ASP.NET Web Forms framework has been specifically designed to address a number of
key deficiencies in the previous model. In particular, it provides:

e The ability to create and use reusable Ul controls that can encapsulate common functionality
and thus reduce the amount of code that a page developer has to write.

e The ability for developers to cleanly structure their page logic in an orderly fashion (not
""spaghetti code").

e The ability for development tools to provide strong WYSIWYG design support for pages

(existing ASP code is opaque to tools).
Introduction To Asp.Net Server Controls

In addition to (or instead of) using <% %> code blocks to program dynamic content,
ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls
are declared within an .aspx file using custom tags or intrinsic HTML tags that contain a

runat=""server™ attributes value. Intrinsic HTML tags are handled by one of the controls in the
28

Monitoring For Detection & Prevention Of Fake Agents

System.Web.UIl.HtmIControls namespace. Any tag that doesn't explicitly map to one of the
controls is assigned the type of System.Web.Ul.HtmIControls.HtmlGenericControl.

Server controls automatically maintain any client-entered values between round trips to the
server. This control state is not stored on the server (it is instead stored within an <input
type=""hidden""> form field that is round-tripped between requests). Note also that no client-side

script is required.

In addition to supporting standard HTML input controls, ASP.NET enables developers to
utilize richer custom controls on their pages. For example, the following sample demonstrates how

the <asp:adrotator> control can be used to dynamically display rotating ads on a page.
1. ASP.NET Web Forms provide an easy and powerful way to build dynamic Web Ul.

2. ASP.NET Web Forms pages can target any browser client (there are no script library or

cookie requirements).
3. ASP.NET Web Forms pages provide syntax compatibility with existing ASP pages.
4. ASP.NET server controls provide an easy way to encapsulate common functionality.

5. ASP.NET ships with 45 built-in server controls. Developers can also use controls built by

third parties.
6. ASP.NET server controls can automatically project both uplevel and downlevel HTML.

7. ASP.NET templates provide an easy way to customize the look and feel of list server

controls.

8. ASP.NET validation controls provide an easy way to do declarative client or server data

validation.
2.6.3 C#.NET
Ado.Net Overview

ADO.NET is an evolution of the ADO data access model that directly addresses user
requirements for developing scalable applications. It was designed specifically for the web with
scalability, statelessness, and XML in mind.

ADO.NET uses some ADO objects, such as the Connection and Command objects, and also
introduces new objects. Key new ADO.NET objects include the Dataset, Data Reader, and Data
Adapter.

29

Monitoring For Detection & Prevention Of Fake Agents

The important distinction between this evolved stage of ADO.NET and previous data
architectures is that there exists an object -- the DataSet -- that is separate and distinct from any
data stores. Because of that, the DataSet functions as a standalone entity. You can think of the
DataSet as an always disconnected recordset that knows nothing about the source or destination of
the data it contains. Inside a DataSet, much like in a database, there are tables, columns,

relationships, constraints, views, and so forth.

The following sections will introduce you to some objects that have evolved, and some that

are new. These objects are:
e Connections. For connection to and managing transactions against a database.
e Commands. For issuing SQL commands against a database.

e DataReaders. For reading a forward-only stream of data records from a SQL Server data

source.

e DataSet. For storing, Remoting and programming against flat data, XML data and relational
data.

e DataAdapters. For pushing data into a DataSet, and reconciling data against a database.
Connections

Connections are used to 'talk to' databases, and are represented by provider-specific classes
such as SglConnection. Commands travel over connections and resultsets are returned in the form

of streams which can be read by a DataReader object, or pushed into a DataSet object.
Commands

Commands contain the information that is submitted to a database, and are represented by
provider-specific classes such as SqiCommand. A command can be a stored procedure call, an
UPDATE statement, or a statement that returns results. You can also use input and output
parameters, and return values as part of your command syntax. The example below shows how to

issue an INSERT statement against the Northwind database.
DataReaders

The Data Reader object is somewhat synonymous with a read-only/forward-only cursor
over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is
returned after executing a command against a database. The format of the returned DataReader

object is different from a recordset. For example, you might use the DataReader to show the results
30

Monitoring For Detection & Prevention Of Fake Agents
of a search list in a web page.
Datasets and dataadapters

DataSets

The Dataset object is similar to the ADO Recordset object, but more powerful, and with
one other important distinction: the DataSet is always disconnected. The DataSet object represents
a cache of data, with database-like structures such as tables, columns, relationships, and constraints.
However, though a DataSet can and does behave much like a database, it is important to remember
that DataSet objects do not interact directly with databases, or other source data. This allows the
developer to work with a programming model that is always consistent, regardless of where the
source data resides. Data coming from a database, an XML file, from code, or user input can all be
placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and
verified before updating the source data. The GetChanges method of the DataSet object actually
creates a second DatSet that contains only the changes to the data. This DataSet is then used by a

DataAdapter (or other objects) to update the original data source.
Dataadapters (Oledb/Sql)

The DataAdapter object works as a bridge between the DataSet and the source data. Using
the provider-specific SqglDataAdapter (along with its associated SglCommand and
SqglConnection) can increase overall performance when working with a Microsoft SQL Server
databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object

and its associated OleDbCommand and OleDbConnection objects.
1. ADO.NET is the next evolution of ADO for the .Net Framework.

2. ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new
objects, the DataSet and DataAdapter, are provided for these scenarios.

3. ADO.NET can be used to get data from a stream, or to store data in a cache for updates.
4. Thereis a lot more information about ADO.NET in the documentation.

5. Remember, you can execute a command directly against the database in order to do inserts,
updates, and deletes. You don't need to first put data into a DataSet in order to insert,

update, or delete it.

31

Monitoring For Detection & Prevention Of Fake Agents
2.6.4 Sql Server -2008

A database management, or DBMS, gives the user access to their data and helps them
transform the data into information. Such database management systems include dBase, paradox,
IMS, SQL Server and SQL Server. These systems allow users to create, update and extract

information from their database.

A database is a structured collection of data. Data refers to the characteristics of people,
things and events. SQL Server stores each data item in its own fields. In SQL Server, the fields
relating to a particular person, thing or event are bundled together to form a single complete unit of
data, called a record (it can also be referred to as raw or an occurrence). Each record is made up of

a number of fields. No two fields in a record can have the same field name.

During an SQL Server Database design project, the analysis of your business needs
identifies all the fields or attributes of interest. If your business needs change over time, you define

any additional fields or change the definition of existing fields.
Sql Server Tables

SQL Server stores records relating to each other in a table. Different tables are created for

the various groups of information. Related tables are grouped together to form a database.
Primary Key

Every table in SQL Server has a field or a combination of fields that uniquely identifies each
record in the table. The Unique identifier is called the Primary Key, or simply the Key. The
primary key provides the means to distinguish one record from all other in a table. It allows the

user and the database system to identify, locate and refer to one particular record in the database.
Relational Database

Sometimes all the information of interest to a business operation can be stored in one table.
SQL Server makes it very easy to link the data in multiple tables. Matching an employee to the
department in which they work is one example. This is what makes SQL Server a relational
database management system, or RDBMS. It stores data in two or more tables and enables you to
define relationships between the table and enables you to define relationships between the tables.

Foreign Key

32

Monitoring For Detection & Prevention Of Fake Agents

When a field is one table matches the primary key of another field is referred to as a foreign
key. A foreign key is a field or a group of fields in one table whose values match those of the

primary key of another table.
Referential Integrity

Not only does SQL Server allow you to link multiple tables, it also maintains consistency
between them. Ensuring that the data among related tables is correctly matched is referred to as

maintaining referential integrity.
Data Abstraction

A major purpose of a database system is to provide users with an abstract view of the data.
This system hides certain details of how the data is stored and maintained. Data abstraction is

divided into three levels.

Physical level: This is the lowest level of abstraction at which one describes how the data are

actually stored.

Conceptual Level: At this level of database abstraction all the attributed and what data are actually

stored is described and entries and relationship among them.

View level: This is the highest level of abstraction at which one describes only part of the database.

Advantages Of RDBMS
« Redundancy can be avoided
« Inconsistency can be eliminated
« Data can be Shared
« Standards can be enforced
« Security restrictions ca be applied
« Integrity can be maintained
« Conflicting requirements can be balanced

« Data independence can be achieved.

33

Monitoring For Detection & Prevention Of Fake Agents
Disadvantages Of DBMS

A significant disadvantage of the DBMS system is cost. In addition to the cost of
purchasing of developing the software, the hardware has to be upgraded to allow for the extensive
programs and the workspace required for their execution and storage. While centralization reduces
duplication, the lack of duplication requires that the database be adequately backed up so that in

case of failure the data can be recovered.
Features Of SQL Server (RDBMS)

SQL SERVER is one of the leading database management systems (DBMS) because it is
the only Database that meets the uncompromising requirements of today’s most demanding
information systems. From complex decision support systems (DSS) to the most rigorous online
transaction processing (OLTP) application, even application that require simultaneous DSS and
OLTP access to the same critical data, SQL Server leads the industry in both performance and

capability.

SQL SERVER with transactions processing option offers two features which contribute to
very high level of transaction processing throughput, which are

« The row level lock manager

Enterprise Wide Data Sharing

The unrivalled portability and connectivity of the SQL SERVER DBMS enables all the
systems in the organization to be linked into a singular, integrated computing resource.

Portability

SQL SERVER is fully portable to more than 80 distinct hardware and operating systems
platforms, including UNIX, MSDOS, 0S/2, Macintosh and dozens of proprietary platforms. This
portability gives complete freedom to choose the database server platform that meets the system

requirements.
Open Systems

SQL SERVER offers a leading implementation of industry —standard SQL. SQL Server’s
open architecture integrates SQL SERVER and non —SQL SERVER DBMS with industry’s most
comprehensive collection of tools, application, and third party software products SQL Server’s
Open architecture provides transparent access to data from other relational database and even non-

relational database.

34

Monitoring For Detection & Prevention Of Fake Agents
Distributed Data Sharing

SQL Server’s networking and distributed database capabilities to access data stored on
remote server with the same ease as if the information was stored on a single local computer. A
single SQL statement can access data at multiple sites. You can store data where system

requirements such as performance, security or availability dictate.
Unmatched Performance

The most advanced architecture in the industry allows the SQL SERVER DBMS to deliver

unmatched performance.
Sophisticated Concurrency Control

Real World applications demand access to critical data. With most database Systems
application becomes “contention bound” — which performance is limited not by the CPU power or
by disk I/O, but user waiting on one another for data access. SQL Server employs full, unrestricted
row-level locking and contention free queries to minimize and in many cases entirely eliminates

contention wait times.
No 1/0O Bottlenecks

SQL Server’s fast commit groups commit and deferred write technologies dramatically
reduce disk 1/O bottlenecks. While some database write whole data block to disk at commit time,
SQL Server commits transactions with at most sequential log file on disk at commit time, On high

throughput systems, one sequential writes typically group commit multiple transactions.

35

Monitoring For Detection & Prevention Of Fake Agents

SYSTEM ANALYSIS

3.1 Existing System

We consider applications where the original sensitive data cannot be perturbed. Perturbation
is a very useful technique where the data is modified and made “less sensitive” before being handed

to agents. However, in some cases it is important not to alter the original distributor’s data.

Traditionally, leakage detection is handled by watermarking, e.g., a unique code is embedded
in each distributed copy. If that copy is later discover ed in the hands of an unauthorized party, the
leaker can be identified. Watermarks can be very useful in some cases, but again, involve some
modification of the original data. Furthermore, watermarks can sometimes be destroyed if the data

recipient is malicious.
3.2 Problem Statement

A distributor owns a set T={ts,...,tn}of valuable data objects. The distributor wants to share
some of the objects with a set of agents U;,Us,... Uy, but does not wish the objects be leaked to other
third parties. The objects in T could be of any type and size, e.g., they could be tuples in a relation,
or relations in a database. An agent Ui receives a subset of objects, determined either by a sample

request or an explicit request:
1. Sample request
2. Explicit request

An agent Uj recieve a subset of objects R; < T, determined either by a sample request or an

explict request:
--> Sample request Ri= SAMPLE(T,m;): Any subset of m; records from T can be given to U;
--> Explicit request Ri= EXPLICT(T,cond;): Agent U; receives all T objects that satisfy cond;

Although we do not discuss it here, our model can be easily extended to requests for a sample
of objects that satisfy a condition (e.g., an agent wants any 100 california customer records). Also
note that we do not concern ourselves with the randomness of a sample. (We assume that if a
random sample is required, there are enough T records so that the to-be-presented object selection

schemes can pick random records T).

Assumption 1. For all t, t' €S such that t + t', the provenance of t is independent of the provenance
of t'.

36

Monitoring For Detection & Prevention Of Fake Agents

The term provenance in this assumption statement refers to the source of a value t that appears

in the leaked set. The source can be any of the agents who have t in their sets or the target itself

(guessing).

To simplify our formulas, the following assumption states that joint events have a negligible
probability. As we argue in the example below, this assumption gives us more conservative

estimates for the guilt of agents, which is consistent with our goals.
Assumption 2. An objectt €S can only be obtained by the target in one of two ways:
* A single agent U; leaked t from its own R; set;

* The target guessed (or obtained through other means) t without the help of any of the n
agents In other words, for all t €S, the event that the target guesses t and the events that agent U; (i

=1,...,n) leaks object t are disjoint.

Before we present the general formula for computing the probability Pr{Gi|S} that an agent
U; is guilty, we provide a simple example. Assume that the distributor set T, the agent sets R’s and

the target set S are:
T={t1, to,t3}, Ri={t1, t2}, Ro={t1,t3}, S= {ty, to,ts}.

In this case, all three of the distributor’s objects have been leaked and appear in S. Let us first
consider how the target may have obtained object t;, which was given to both agents. From
Assumption 2, the target either guessed t1 or one of U; or U, leaked it. We know that the
probability of the former event is p, so assuming that probability that each of the two agents leaked

t1 is the same we have the following cases:
= The target guessed t1 with probability p;
= Agent U; leaked t; to S with probability (1 — p)/2;
= Agent U, leaked t; to S with probability (1 — p)/2

Similarly, we find that agent U; leaked t, to S with probability 1 — p since he is the only agent
that has t2. Given these values, the probability that agent U; is not guilty, namely that U; did not
leak either object is:

Pr{G'1[S}-(1-(1-p)/2) x(1-(1-p)) - (1)

and the probability that U1 is guilty is: Pr{G;| S} = 1- Pr{G;}

37

Monitoring For Detection & Prevention Of Fake Agents

Note that if Assumption 2 did not hold, our analysis would be more complex because we
would need to consider joint events, e.g., the target guesses t; and at the same time one or two
agents leak the value. In our simplified analysis we say that an agent is not guilty when the object
can be guessed, regardless of whether the agent leaked the value. Since we are “not counting”
instances when an agent leaks information, the simplified analysis yields conservative values

(smaller probabilities).

In the general case (with our assumptions), to find the probability that an agent Ui is guilty
given a set S, first we compute the probability that he leaks a single object t to S. To compute this
we define the set of agents Vt = {Uj|t € R} that have t in their data sets. Then using Assumption 2

and known probability p, we have:
Pr{some agent leaked tto S} =1-p ------- (3)
Assuming that all agents that belong to Vt can leak t to S with equal probability and using

Assumption 2 we obtain:

, . ‘Tl— if U; € V;
Pr{U; leaked t to S} = 0 ‘ i ; 4)
; otherwise

Given that agent U; is guilty if he leaks at least one value to S, with Assumption 1 and
Equation 4 we can compute the probability Pr{G;|S} that agent U; is guilty:

Pr{G;|S}=1-] (1—1]‘;’) (5)

teSNRk,

3.3 Proposed System

After giving a set of objects to agents, the distributor discovers some of those same objects in
an unauthorized place. At this point the distributor can assess the likelihood that the leaked data
came from one or more agents, as opposed to having been independently gathered by other means.
If the distributor sees “enough evidence” that an agent leaked data, he may stop doing business with
him, or may initiate legal proceedings. In this project we develop a model for assessing the “guilt”
of agents. We also present algorithms for distributing objects to agents, in a way that improves our
chances of identifying a leaker. Finally, we also consider the option of adding “fake” objects to the

distributed set. Such objects do not correspond to real entities but appear. If it turns out an agent

38

Monitoring For Detection & Prevention Of Fake Agents
was given one or more fake objects that were leaked, then the distributor can be more confident that
agent was guilty.

3.3.1 Advantages

> As web threats get ever more sophisticated businesses need to take a more proactive

stance if they are to successfully defend against them.

> M86 Security offers a range of web security solutions and its latest Secure Web
Gateways have a number of unique capabilities designed to target and eliminate the most devious of
attacks.

> The appliance defaults to an explicit proxy so you can change your client browser

proxy settings using group policies or PAC scripts.

> 4 The SWG 5000 can also operate transparently but it will still be necessary to
redirect traffic to the appliance for scanning.

3.4 Feasibility Study

Preliminary investigation examine project feasibility, the likelihood the system will be useful to the
organization. The main objective of the feasibility study is to test the Technical, Operational and Economical
feasibility for adding new modules and debugging old running system. All system is feasible if they are
unlimited resources and infinite time. There are aspects in the feasibility study portion of the preliminary

investigation:
« Technical Feasibility
« Operational Feasibility
« Economical Feasibility
3.4.1 Technical Feasibility

The technical issue usually raised during the feasibility stage of the investigation includes the

following:
¢ Does the necessary technology exist to do what is suggested?

¢ Do the proposed equipment have the technical capacity to hold the data required to use the

new system?
39

Monitoring For Detection & Prevention Of Fake Agents

o Will the proposed system provide adequate response to inquiries, regardless of the number

or location of users?
e Can the system be upgraded if developed?
e Are there technical guarantees of accuracy, reliability, ease of access and data security?

Earlier no system existed to cater to the needs of ‘Secure Infrastructure Implementation
System’. The current system developed is technically feasible. It is a web based user interface for
audit workflow at NIC-CSD. Thus it provides an easy access to the users. The database’s purpose is
to create, establish and maintain a workflow among various entities in order to facilitate all
concerned users in their various capacities or roles. Permission to the users would be granted based

on the roles specified.

Therefore, it provides the technical guarantee of accuracy, reliability and security. The
software and hard requirements for the development of this project are not many and are already
available in-house at NIC or are available as free as open source. The work for the project is done
with the current equipment and existing software technology. Necessary bandwidth exists for

providing a fast feedback to the users irrespective of the number of users using the system.
3.3.2 Operational Feasibility

Proposed projects are beneficial only if they can be turned out into information system. That
will meet the organization’s operating requirements. Operational feasibility aspects of the project
are to be taken as an important part of the project implementation. Some of the important issues
raised are to test the operational feasibility of a project includes the following: -

e Is there sufficient support for the management from the users?

o Will the system be used and work properly if it is being developed and implemented?

o Will there be any resistance from the user that will undermine the possible application
benefits?

This system is targeted to be in accordance with the above-mentioned issues. Beforehand, the
management issues and user requirements have been taken into consideration. So there is no

question of resistance from the users that can undermine the possible application benefits.

The well-planned design would ensure the optimal utilization of the computer resources and

would help in the improvement of performance status.

40

Monitoring For Detection & Prevention Of Fake Agents
3.4.3. Economical Feasibility

A system can be developed technically and that will be used if installed must still be a good
investment for the organization. In the economical feasibility, the development cost in creating the
system is evaluated against the ultimate benefit derived from the new systems. Financial benefits

must equal or exceed the costs.

The system is economically feasible. It does not require any addition hardware or software.
Since the interface for this system is developed using the existing resources and technologies

available at NIC, There is nominal expenditure and economical feasibility for certain.
3.5 Algorithm

1. Evaluation of Explicit Data Request Algorithms

In the first place, the goal of these experiments was to see whether fake objects in the
distributed data sets yield significant improvement in our chances of detecting a guilty agent. In the

second place, we wanted to evaluate our e-optimal algorithm relative to a random allocation.
2. Evaluation of Sample Data Request Algorithms

With sample data requests agents are not interested in particular objects. Hence, object
sharing is not explicitly defined by their requests. The distributor is “forced” to allocate certain
objects to multiple agents only if the number of requested objects exceeds the number of objects in
set T. The more data objects the agents request in total, the more recipients on average an object

has; and the more objects are shared among different agents, the more difficult it is to detect a guilty

agent.
=> Finding the probablity of the agent that has leaked the data
T {1, 2,3, td~ ..o tn—}. ------- Total no of Objects.
U—{ul,u2,u3,ud.................. ul}. - Total no of Agents.
Ri—{rl,r2,13,. ..., m} --------- Total no of Objects with agents.

Ri -C T.i.e., Rissubset of T and is always less than T.
S—{s81,82,83, i sn} --m----m-- Total no of leaked bjects.

Gi- e Guilty Agent.

The probability to find the guitly agent is as followed.

41

Monitoring For Detection & Prevention Of Fake Agents

Case Study:

Consider the following, in the developed web application if the employees download the
articles.

Total no of articles ~ —m-mmemee- 12;

Articles downloaded by Empl are ------------ 3 and their id’s are al, a2,a3;
Articles downloaded by Emp 2 are ------------ 3 and their id’s are al, a3 ,a5.
Avrticles donwloaded by Emp3 are ------------ landisidis a4.

So, we have

T=12;

U=3;

R=7;

S = total no of leaked articles which is the input.

Now if administrator finds article with id a4 is leaked then the probability to identify the
guilty agent as Emp3 is 100%. And in the second case if the leaked article is al the ad-min can
suspect the employees, empl and emp2. By using the above formula we can find the probability for

any number of cases and with better accuracy.

Input: Here input is the object which is to be detected.

Output: The output is probability of the agent who has leaked the data.
Data Allocation Problems.

In this we deal with the data allocation problems. We discuss about the techniques how
intelligent they can be distributed to the agents so that the probability of finiding the guilty agent is

maximum.
Fake Objects

Understanding the concept of fake objects. Consider the following two scenarios to

understand the concept of fake objects. The scenarios are as which are discussed in the base project.

In most cases, individual objects are perturbed, e.g., by adding random noise to sensitive
salaries, or adding a watermark to an image. In our case, we are perturbing the set of distributor

objects by adding fake elements.

42

Monitoring For Detection & Prevention Of Fake Agents

The distributed data objects are medical records and the agents are hospitals. In this case, even
small modifications to the records of actual patients may be undesirable. However, the addition of
some fake medical records may be acceptable, since no patient matches these records, and hence no

one will ever be treated based on fake records.

YES

Figure 3.5.1 Sample flow chart of Data Leakage

Here, we model the creation of a fake object for agent Ui as a black-box function
CREATEFAKEOBJECT(RI; Fi; condi) that takes as input the set of all objects Ri, the subset of
fake objects Fi that Ui has received so far and condi, and returns a new fake object. This function
needs condi to produce a valid object that satisfies Ui’s condition. Set Ri is needed as input so that

the created fake object is not only valid but also indistinguishable from other real objects.

For example, the creation function of a fake payroll record that includes an employee rank
and a salary attribute may take into account the distribution of employee ranks, the distribution of
salaries as well as the correlation between the two attributes. Ensuring that key statistics do not
change by the introduction of fake objects is important if the agents will be using such statistics in
their work. Finally, function CREATEFAKEOBJECT() has to be aware of the fake objects Fi
added so far, again to ensure proper statistics. The distributor can also use function
CREATEFAKEOBJECT() when it wants to send the same fake object to a set of agents.

In this case, the function arguments are the union of the Ri and Fi tables respectively, and the
intersection of the conditions cond;’s. Although we do not deal with the implementation of
CREATEFAKEOBJECT() we note that there are two main design options. The function can either
produce a fake object on demand every time it is called, or it can return an appropriate object from a
pool of objects created in advance.

43

Monitoring For Detection & Prevention Of Fake Agents

As a conclusion it is made clear that fake objects can be anything depending on the
distributor and these project doesnot deal with creation of fake objects, but
CREATEFAKEOBJECT() method is defined in order to distribute the objects to the agents with

fake object or without fake object depending on the request.

To allocate the data to the users the following four conditions are defined.

(@) EF (b) EF (c) SF (d)SF
Where
E — Explicit Request S — Sample Request
F — Fake Object F — Without Fake Object

Types Of Leakages :

Type of information leaked Percentage
Confidential information 15%
Intellectual property 4%
Health records 8%
Customer data 73%

44

Monitoring For Detection & Prevention Of Fake Agents

System Requirements Specification

4.1 Introduction

In the course of doing business, sometimes sensitive data must be handed over to supposedly
trusted third parties. For example, a hospital may give patient records to researchers who will devise
new treatments. Similarly, a company may have partnerships with other companies that require
sharing customer data. Another enterprise may outsource its data processing, so data must be given
to various other companies. We call the owner of the data the distributor and the supposedly trusted
third parties the agents. Our goal is to detect when the distributor’s sensitive data has been leaked
by agents, and if possible to identify the agent that leaked the data. We consider applications where
the original sensitive data cannot be perturbed. Perturbation is a very useful technique where the
data is modified and made “less sensitive” before being handed to agents. For example, one can add

random noise to certain attributes, or one can replace exact values by ranges.

However, in some cases it is important not to alter the original distributor’s data. For example,
if an outsourcer is doing our payroll, he must have the exact salary and customer bank account
numbers. If medical researchers will be treating patients (as opposed to simply computing
statistics), they may need accurate data for the patients. Traditionally, leakage detection is handled
by watermarking, e.g., a unique code is embedded in each distributed copy. If that copy is later
discovered in the hands of an unauthorized party, the leaker can be identified. Watermarks can be

very useful in some cases, but again, involve some modification of the original data.
4.2 Purpose

Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious. In this
project we study unobtrusive techniques for detecting leakage of a set of objects or records.
Specifically, we study the following scenario: After giving a set of objects to agents, the distributor
discovers some of those same objects in an unauthorized place. (For example, the data may be
found on a web site, or may be obtained through a legal discovery process.) At this point the
distributor can assess the likelihood that the leaked data came from one or more agents, as opposed
to having been independently gathered by other means. Using an analogy with cookies stolen from
a cookie jar, if we catch Freddie with a single cookie, he can argue that a friend gave him the
cookie. But if we catch Freddie with 5 cookies, it will be much harder for him to argue that his
hands were not in the cookie jar. If the distributor sees “enough evidence” that an agent leaked data,

he may stop doing business with him, or may initiate legal proceedings.

45

Monitoring For Detection & Prevention Of Fake Agents
4.3 Functional Requirements

Functional Requirements refer to very important system requirements in a software
engineering process (or at micro level, a sub part of requirement engineering) such as technical
specifications, system design parameters and guidelines, data manipulation, data processing and

calculation modules etc.

Functional Requirements are in contrast to other software design requirements referred to as
Non-Functional Requirements which are primarily based on parameters of system performance,
software quality attributes, reliability and security, cost, constraints in design/implementation etc.
The key goal of determining “functional requirements” in a software product design and
implementation is to capture the required behaviour of a software system in terms of functionality
and the technology implementation of the business processes.

The Functional Requirement document (also called Functional Specifications or Functional
Requirement Specifications), defines the capabilities and functions that a System must be able to

perform successfully.
Functional Requirements should include:
1. Descriptions of data to be entered into the system
2. Descriptions of operations performed by each screen
3. Descriptions of work-flows performed by the system
4. Descriptions of system reports or other outputs
5. Who can enter the data into the system?
6. How the system meets applicable regulatory requirements

The functional specification is designed to be read by a general audience. Readers should
understand the system, but no particular technical knowledge should be required to understand the

document.
Examples of Functional Requirements

Functional requirements should include functions performed by specific screens, outlines of
work-flows performed by the system and other business or compliance requirements the system

must meet.

46

Monitoring For Detection & Prevention Of Fake Agents

Interface requirements

> Field accepts numeric data entry
> 4 Field only accepts dates before the current date
> 4 Screen can print on-screen data to the printer

Business Requirements

> Data must be entered before a request can approved

> Clicking the Approve Button moves the request to the Approval Workflow

> All personnel using the system will be trained according to internal training strategies
Regulatory/Compliance Requirements

> The database will have a functional audit trail

> The system will limit access to authorized users

> The spread sheet can secure data with electronic signatures

Security Requirements

> 4 Member of the Data Entry group can enter requests but not approve or delete requests .
> 4 Members of the Managers group can enter or approve a request, but not delete requests .

> 4 Members of the Administrators group cannot enter or approve requests, but can delete

requests

The functional specification describes what the system must do; how the system does it is
described in the Design Specification. If a User Requirement Specification was written, all
requirements outlined in the user requirement specification should be addressed in the functional

requirements.
4.3 Non Functional Requirements
All the other requirements which do not form a part of the above specification are

categorized as Non-Functional Requirements.

A system may be required to present the user with a display of the number of records in a

database. This is a functional requirement.

How up-to-date this number needs to be is a non-functional requirement. If the number
47

Monitoring For Detection & Prevention Of Fake Agents

needs to be updated in real time, the system architects must ensure that the system is capable of
updating the displayed record count within an acceptably short interval of the number of records

changing.
Sufficient network bandwidth may also be a non-functional requirement of a system.

Accessibility is a general term used to describe the degree to which a product, device, service, or
environment is accessible by as many people as possible. Accessibility can be viewed as the "ability
to access" and possible benefit of some system or entity. Accessibility is often used to focus on
people with disabilities and their right of access to the system.

Availability is the degree to which a system, subsystem, or equipment is operable and in a
committable state at the start of a mission, when the mission is called for at an unknown, i.e., a
random, time. Simply put, availability is the proportion of time a system is in a functioning

condition.

Expressed mathematically, availability is 1 minus the unavailability.

A backup or the process of backing up refers to making copies of data so that these additional
copies may be used to restore the original after a data loss event. These additional copies are
typically called "backups.”

Certification refers to the confirmation of certain characteristics of an object, system, or
organization. This confirmation is often, but not always, provided by some form of external review,

education, or assessment
Compliance is the act of adhering to, and demonstrating adherence to, a standard or regulation.

Configuration management (CM) is a field that focuses on establishing and maintaining
consistency of a system's or product's performance and its functional and physical attributes with its

requirements, design, and operational information throughout its life.

Documentation may refer to the process of providing evidence ("to document something™) or to the
communicable material used to provide such documentation (i.e. a document). Documentation may
also (seldom) refer to tools aiming at identifying documents or to the field of study devoted to the
study of documents and bibliographies

48

Monitoring For Detection & Prevention Of Fake Agents

Disaster recovery is the process, policies and procedures related to preparing for recovery or
continuation of technology infrastructure critical to an organization after a natural or human-

induced disaster.

Extensibility (sometimes confused with forward compatibility) is a system design principle where
the implementation takes into consideration future growth. It is a systemic measure of the ability to
extend a system and the level of effort required to implement the extension. Extensions can be
through the addition of new functionality or through modification of existing functionality. The

central theme is to provide for change while minimizing impact to existing system functions.

Interoperability is a property referring to the ability of diverse systems and organizations to work
together (inter-operate). The term is often used in a technical systems engineering sense, or
alternatively in a broad sense, taking into account social, political, and organizational factors that

impact system to system performance.

Maintenance is the ease with which a software product can be modified in order to:

. correct defects
. meet new requirements
. make future maintenance easier, or cope with a changed environment;

Open source describes practices in production and development that promote access to the end

product's source materials—typically, their source code

Operability is the ability to keep equipment, a system or a whole industrial installation in a safe

and reliable functioning condition, according to pre-defined operational requirements.

In a computing systems environment with multiple systems this includes the ability of products,

systems and business processes to work together to accomplish a common task.

Computer performance is characterized by the amount of useful work accomplished by a

computer system compared to the time and resources used.
Depending on the context, good computer performance may involve one or more of the following:
. Short response time for a given piece of work

49

Monitoring For Detection & Prevention Of Fake Agents

. High throughput (rate of processing work)

. Low utilization of computing resource(s)

. High availability of the computing system or application

. Fast (or highly compact) data compression and decompression
. High bandwidth / short data transmission time

Price in economics and business is the result of an exchange and from that trade we assign a

numerical monetary value to a good, service or asset

Portability is one of the key concepts of high-level programming. Portability is the software-code
base feature to be able to reuse the existing code instead of creating new code when moving
software from an environment to another. When one is targeting several platforms with the same

application, portability is the key issue for development cost reduction.

Quality: The common element of the business definitions is that the quality of a product or service
refers to the perception of the degree to which the product or service meets the customer's
expectations. Quality has no specific meaning unless related to a specific function and/or object.
Quality is a perceptual, conditional and somewhat subjective attribute.

Reliability may be defined in several ways:

. The idea that something is fit for purpose with respect to time;

. The capacity of a device or system to perform as designed;

. The resistance to failure of a device or system;

. The ability of a device or system to perform a required function under stated conditions for a

specified period of time;
. The probability that a functional unit will perform its required function for a specified
interval under stated conditions.

. The ability of something to "fail well™ (fail without catastrophic consequences

Resilience is the ability to provide and maintain an acceptable level of service in the face of faults

and challenges to normal operation.

These services include:

. supporting distributed processing

50

Monitoring For Detection & Prevention Of Fake Agents

. supporting networked storage

. maintaining service of communication services such as
video conferencing
instant messaging
online collaboration

. access to applications and data as needed
Response time perceived by the end user is the interval between

(a) The instant at which an operator at a terminal enters a request for a response from a computer

and

(b) The instant at which the first character of the response is received at a terminal.

In a data system, the system response time is the interval between the receipt of the end of
transmission of an inquiry message and the beginning of the transmission of a response message to

the station originating the inquiry.

Robustness is the quality of being able to withstand stresses, pressures, or changes in procedure or
circumstance. A system or design may be said to be "robust” if it is capable of coping well with
variations (sometimes unpredictable variations) in its operating environment with minimal damage,

alteration or loss of functionality.

The concept of scalability applies to technology and business settings. Regardless of the setting, the
base concept is consistent - The ability for a business or technology to accept increased volume
without impacting the system.In telecommunications and software engineering, scalability is a
desirable property of a system, a network, or a process, which indicates its ability to either handle

growing amounts of work in a graceful manner or to be readily enlarged.

Security is the degree of protection against danger, loss, and criminals.

Security has to be compared and contrasted with other related concepts: Safety, continuity,
reliability. The key difference between security and reliability is that security must take into account

the actions of people attempting to cause destruction.

51

Monitoring For Detection & Prevention Of Fake Agents

Security as a state or condition is resistance to harm. From an objective perspective, it is a
structure's actual (conceptual and never fully knowable) degree of resistance to harm.

Stability - it means much of the objects will be stable over time and will not need changes.

Safety is the state of being "safe", the condition of being protected against physical, social,
spiritual, financial, political, emotional, occupational, psychological, educational or other types or
consequences of failure, damage, error, accidents, harm or any other event which could be
considered non-desirable. This can take the form of being protected from the event or from
exposure to something that causes health or economical losses. It can include protection of people
or of possessions

Supportability (also known as serviceability) is one of the aspects of RASU (Reliability,
Availability, Serviceability, and Usability)). It refers to the ability of technical support personnel to
install, configure, and monitor products, identify exceptions or faults, debug or isolate faults to root
cause analysis, and provide hardware or software maintenance in pursuit of solving a problem and
restoring the product into service. Incorporating serviceability facilitating features typically results
in more efficient product maintenance and reduces operational costs and maintains business

continuity.

Testability, a property applying to an empirical hypothesis, involves two components: (1) the
logical property that is variously described as contingency, defeasibility, which means that counter
examples to the hypothesis are logically possible, and (2) the practical feasibility of observing a
reproducible series of such counter examples if they do exist. In short it refers to the capability of an

equipment or system to be tested

Usability is a term used to denote the ease with which people can employ a particular tool or other
human-made object in order to achieve a particular goal. In human-computer interaction and
computer science, usability often refers to the elegance and clarity with which the interaction with a

computer program or a web site is designed.

52

4.5 Hardware Requirements

PROCESSOR : PENTIUM IV 2.4 GHz
RAM : 1GB

MONITOR ;157

HARD DISK : 160 GB

CDDRIVE o 52X

KEYBOARD : STANDARD 102 KEYS
MOUSE : 3BUTTONS

4.6 Software Requirements

IDE : VISUAL STUDIO 2008
DATABAS : SQL SERVER2005/2008
CODING LANGUAGE : C#NET

FRONT END : VB.NET, ASP.NET

OPERATING SYSTEM : WINDOWS XP

Monitoring For Detection & Prevention Of Fake Agents

53

Monitoring For Detection & Prevention Of Fake Agents

System Design

5.1 System Specification

The purpose of the design phase is to plan a solution of the problem specified by the
requirement document. This phase is the first step in moving from the problem domain to the
solution domain. In other words, starting with what is needed, design takes us toward how to satisfy
the needs. The design of a system is perhaps the most critical factor affection the quality of the

software; the output of this phase is the design document.

System Design also called top-level design aims to identify the modules that should be in the
system, the specifications of these modules, and how they interact with each other to produce the
desired results. At the end of the system design all the major data structures, file formats, output

formats, and the major modules in the system and their specifications are decided.
5.2 System Components
The set of primary components that are identified by the ERD are

= Data object

= Relationships

= Attributes

= Various types of indicators.

The primary purpose of the ERD is to represent data objects and their relationships.

54

Monitoring For Detection & Prevention Of Fake Agents

5.3 UML DIAGRAMS

Lngln
Distributar

Signup for new Agents

-

istribute Data to agents

O

ta distributed to agents

-

nd Guilthgents

-

Find probability

Recieve Data from distributar

Ag ent

-

Transfer data to other agents

Figure 5.3.1 Overall Use Diagram for MFDPFA

55

Monitoring For Detection & Prevention Of Fake Agents

Agent Name o«
Agent

Contact Person

Address

Contact Number g

Figure 5.3.2 Use Diagram for Agent login

56

Monitoring For Detection & Prevention Of Fake Agents

Find Guilt Agent

Guilt Agent Detection

Agent Frequency of Gulty Agents

Probability Distribution

Figure 5.3.3 Use Diagram for Agent

57

Monitoring For Detection & Prevention Of Fake Agents

' Distributor Login

Distributed Data Agents

Distributor

View Distributed Data

. Distributor Menu

Back To Distributed Menu

Figure 5.3.4 Use Diagram for Distributor

2 Receiving Path

File Receiving path

A—X

Receiver Agent

Figure 5.3.5 Use Diagram for Receiver through Agent

58

Monitoring For Detection & Prevention Of Fake Agents

Work Group Name

_ Enter Agent ID

Data Transfer to Agents

. IP address
- Data Transfer

Figure 5.3.6 Use Diagram for Data Transfer to Agents

59

Monitoring For Detection & Prevention Of Fake Agents

:Login

:Distribute Data

:View Distributed

To Agents

Data

} - - -

{Login as Distlributor}

|
|
|
- - Sl
{Store Data Intq Patabase}

:Find Guilt

Agents

:Probability Distributed

o o - - - -

{View from Data ba

Data

for Data Leakage}

{Find Probabilit Data Transfer to Agents}
|
|
|
|
|
|
|
|
|
|
|

L
T |

| |

| |

Figure 5.3.7 Sequence Diagram for Data Transfer from Distributor to Agents

‘-0l 3 :Distributed > :‘View Distributed
2o Data to Agents Data
:Find Guilt | :Probability

Agents Distribution of Data

Figure 5.3.8 Collaboration Diagram for Data Transfer from Distributor to Agents

60

Monitoring For Detection & Prevention Of Fake Agents

:receiving path server

| T
I I
I I
I I

{receving pgth

Figure 5.3.9 Sequence Diagram for Receiver path

:distributor SHARTS S
| i |
— —___ foata transfer} _ _ _ _ {IP Addressj.|
W {Back)_
T L1 S R—— .

Figure 5.3.10 Sequence Diagram for Data Transfer to Agents

61

Monitoring For Detection & Prevention Of Fake Agents

:Findguilt agent :probability
T T
| |
' e — — — _ dquilt_agen :
e oo e F LW BTE]
<=

Figure 5.3.11 Sequence Diagram for Agents Guilt Model

:agent signup :agent user id JpsEon AERyE e tddress :contact number

T T T T T

| | [[! !

[| ' ' ! '

| | ' ' ‘ '

- _ _ _ fagent_id | | |

e APASEWALD {agent_name} I I

_ _ _{addrass :

_ _ {contact number}

- - - - -

Figure 5.3.12 Sequence Diagram for Agent SignUp

62

Monitoring For Detection & Prevention Of Fake Agents

-distributed data :view distributed data

T I
I |
I |
| |

{distribute ata}

{view data }_}

— e — -

Figure 5.3.13 Sequence Diagram for Distributed to data & view data

:signup for new agents -distributed data :Finding guilt agents
T
Distributor : : |
[
! : ! |
! : ! '
I | [
-
_____ {sign up adents} | I
i {distributed dbta} !
____________ |
_____ _{finding guilt' agents}
e T oo [
[
T ' '
[

Figure 5.3.14 Sequence Diagram for Distributor Functions

63

Monitoring For Detection & Prevention Of Fake Agents

]

| | ddypias+)

{imas+

LT TR TH T 00+
[$3uuedandaz T ¥1 UL+
(10803 xopinode
[)%311) UsTILNges |89

(lsunxyone

11437107 10qete

|) sysauadaoiors jetiuy
{|osods g

| 16%3112 J0INgT235TONI
()Z2%2113 1010235704334
11743112 403nQ1235TauIae
(S L ERTEL Tt

() spociaes

Tl
SIUaG0%e0)
010011357003+
1ualyuigs
P1814¢

ey
SWodPM

<SR 2>

{1 53vsundsoyszT e T3 TUL
[JpocieerierpoIngriasige
{losodstpe

(1011 yo33me

| Juzepmatauige

{ JEIRpmaAING TS TRUIQe

(1 52083 e

1) s38e00de0) 317 30T Omaidis
Hog0zas :_......_wsaa:s. (1sodsiar
Bupiasuoned)ddy ARCICD _“ﬂﬂnwwu” 1)y >«"quwﬁ
< >
......AS::.:S? :!5?:%““”” {|sodsTge (143713 pussuias
{113 T0R I TTeaoniotags 1043515 usdgeiae
DIIRLIUTY N0 1192713 udemuige DORIow. £} Somiiints (HPT1 ss01a
AT | (0T Aemnuae 1) so80aumin0sag {0113 Wwoenge
(AR e 11431712 Wegunae 1) BTy i) {1 spodaae
oy 5B {seonia |) eaput+ FAUT D000t
by st i s ¥ [1052010+ woTLAPSSEI S
SEEL) RO ESS spretde [1punaI&yreq Asevess] T4
ay (RS THE 13} 30,
RpopaIn | 1 nomiay S5a0t sna+] [EL
¥ R:Sv.vu ()1 punos udens vadtn e
J ()91 o1 0de o e 0051 010!
T b g
L 191R0n3744) (1920} Eieguotae
(INOTIRITI#TIN]+ (jzingrotas UTEE2DI003344) .y
() o eesns (] s3useoduo)azT e eI NLINAI0EAL Twiog
[Vet ()aseds3ge 91974+ «[55100>
(lpeo] Japaoss (1asedsTge | 121 19T sesnosey
| |1opaass (1 3B)a3ea) [)5pouiane T
1) dawpeass (111 TRk Ings| TieaeLe
(Jpaase 1) Spouage! e = -
1142712 Thajerge) Tqadae The 10+ Nt
(199329135 TX0QI5TY+ s (AR LAST SO0 40+ ki
| 15130048022 T1§T3UT + x 0+ ()52UR90K0)3 1OV 16T+ N1 I TReeI
IZHT)2 woRngsse1se nene oo+ (19907800 4+ R A oS
113713 o Tngsse1ds 12 Su3autdesss | | UTeW O TIIS T (OTD i
1} 2509570+ 13+ e (asodsips] (1 5p0nat
19112 Aedsigings e 103ues" U3y (10113 uoiyegs e
| 1w amgs 195+ spLatae (143113731 16u30 Euaﬂub.
(DN puacslas 719+ Ty Ot -.31“51_.50 To.mn...
(XIT1) puaguias T+ QegMalA [IN2513 85010030+ 5”83..
OO0 Usdy wigs 0Zeopdnoabs P () 3po) o]
S 1>» reqens
it Fomern i e Lo 40ING3535709.54
(T sosyugs whe FauodEoe i
(It 10oueu1ey $luduedenrs deulitsinge i ‘
|| spoaae I8 A THuIge) .g: :-BS.
eTE e 3ngs) 1+ AMRTIISTOUIR. 153301104
g AP18T 5! (ores FHoPge 193t
Jopuas iF.c {| Spoui o SPLatde ITH
1 s o A
Rk <SR 1> weiBoid UpEI0INGLISIA uiBovOINGSIa
SETELY ST <ctI>
3 ST >

113081+

S WaoIN00+
ELEONITALLG
SLEDBINGLI ST
1HI0E0394)

patde

uun;

2Beganquusa

<5581 5>

{Jusdos
[13501+
|| SpoaIde
U+
SD1814+)
uuo)|bs
(JRDIE) Qrogixag+ <<§58] >
(MR TOgixale
| 1534300080)37 71 9T IUT 4|
(| 9214 Txegrdo it
(1750457p+|
L1%071) uoaime (}quoundan e ieriuly)
| 19210 vine (Ieaodsige
(uesy dosbisiaalys (o137 waueuigy
| 1debrsuyaly+ (1112 3peansyuine
() Spoylinge 1149312 35ayuige
. {1urboijuabys
PETLIAW NG JAsn1ale
priamninge 01 Wales
paromsseding e [FLIURS
UDs 2303 03u03 343 4 pturboy+
2q8nU3RTH00 304 riagel+
ek €106+
SO Lueqers
313001+ 110qe1s
130814/ Jeabeqibe
g130e1+ me
glaqeL+ e
13qeL+ (=1
£13qeLy T3uauDdecos
tiegels PO
Tlegel+ P
treqdnofie 1PIURINIG]
uum
sjusundemy IPeaneuIge
PO
Tuoaimy
rua3angs I9sa UG
RaEage
SPAT4e 3pLaTde
anry ey
dnubis uzaby ujboy Juaby
PRL T e LS e

64

Monitoring For Detection & Prevention Of Fake Agents

i

«é;arsr:\» <<S;’atic Classxe <<Abstract class>>
rogram i 2 :
ContainerControl 9 ApplicationSetting
+
+
<<Class>> +Methods ()
T FTServerCode +main()
+Fields
<<class>> +curMsg
Forml +1pEnd
Form +receivedPath
k
+Fields T‘Zzh 350 <<Class>>
+backgroundworkin % 00 _D i
+buttgn1 9 +FTServerCode() Object <<sealed class=>>
+button2 +StartServer() + Settings
+components +Methods () APP/'C:g;!:etbn
+label2 +~object () —
+label3 +Equals (+loverload) () +Fields
+labeld +GetHascode () +defaultInstance
+label5 <=class>> +GetType() +Properties()
+labelb Resources | —{>{+Memberwiseclone() +Default()
+0bj - +object()
+timerl +Fields +ReferenceEquals ()
+ +resorucesCulture +Tostring()
+Methods () +resoruceMan
+backgroudWorking () +Properties()
+buttonl Click() +Culture()
+button2 Click() +networkingl()
+Disposef) +ResourceManager ()
+Formi() +Methods ()
+IntializeComponents () +Resoruces()
+timerl Tck()

Figure 5.3.16 Class diagram for Receiver through agent

<<Class>> L 1a55>> ?

Form FTServerCode “aStatic C.I':::-— ccAbstractClass>>
Contaiercontro PLELts progr ApplicationSettings
+LurNsg Methods | | SettimpBase
+1pEng +Main)
srecleverfatn
+30CK
<<Class>> :?‘l‘;:?‘:::(‘o&() '—|—D LS P
Form1l +5tartserver() Object
Form TMethods () <<Sealed Class>>

vFrelds +—object() Settings

+backgroundwork vEquals| + 1 overtload....1{) Appications ettin

"’““°"; +GetHashCode| | . glaw

:?;:':x::enh <<class»> —J'D +Get Type () +Filelas

T label2 Resources +MemberwiseClone |) +defaultinstance

PR g TFields +object() +Properties()

+labeld +resourceCulture sRatorencetquals{) sDefault()

slabels s resouceMan FTostring()

+labelt +Proportiesd)

+cb) sbackground 1{)

+tinerl sculture()

«Methods |) +ResourceManage()

+backgroudwork() sMethods ()

+buttonl click() +Resources|)

sbutton2 click()

+Dispose()

+Formi()

+IntializeConponent|)

stinerl tick()

Figure 5.3.17 Class diagram for Receiver through Distributor

65

Monitoring for Detection & Prevention of Fake Agents

Login

i

Data Transfer

!

Fake Objects
Addition

!

Guilt Model Analysis

v

Show the Probability
Distribution of
Dataleakage

!

LogOut

Figure 5.3.18 Flowchart for Data Transfer from Distributor to Agents

66

Monitoring for Detection & Prevention of Fake Agents

Distributed
Data to Agents

View Data
Distibuited to Agents

(Fmd Guilt Agenta

4

Find Probability of
Data Leakage

Figure 5.3.19 Activity Diagram for Data Transfer from Distributor to Agents

67

Monitoring for Detection & Prevention of Fake Agents

Transfer Data To Agents

Distributor

Fake Objects

A

Find Guilt Agents

b 4
Probability Distibuted Data

Figure 5.3.20 Flow Chart for Data Transfer from Distributor to Agents

68

Monitoring for Detection & Prevention of Fake Agents

GuiltProb
Column Name Datatype Allow Nulls
auserid varchar(10) Yes
Account int yes

Table 5.3.1 Guitlt Probability

Guiltagetns
Column Name Datatype Allow Nulls
Aid varchar(10) Yes
Adatapath varchar Yes
Cnt int Yes

Table 5.3.2 Table for Guilt Agent

Asignup
Column Name Datatype Allow Nulls
Primary auserid varchar(10) No
ausername varchar(10) No
apwd varchar(10) No
aname char(20) No
aadress varchar(10) No
acontactno varchar(10) No
acontactperson char(20) No
Table 5.3.3 Table for Agent Signup
Agentrecord
Column Name Datatype Allow Nulls
aid varchar(10) Yes
Aip varchar(20) Yes
adatapath varchar(100) Yes

Table 5.3.4 Table for Agent record

69

Monitoring for Detection & Prevention of Fake Agents

Implementation
6.1 Sample code

Code for Welcome

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.Configuration;

namespace dataleakage

{

public partial class Welcome : Form

{
public Welcome()

{

InitializeComponent();

private void btnDistributor_Click(object sender, EventArgs e)

{

Ithis.Hide();

private void btnAgent_Click(object sender, EventArgs e)
{

70

Monitoring for Detection & Prevention of Fake Agents

private void btnDistributor_Click_1(object sender, EventArgs e)
{

DistributorLogin dl = new DistributorLogin();

dl.Show();

this.Hide();

private void labell_Click(object sender, EventArgs e)
{

private void btnAgent_Click_1(object sender, EventArgs e)
{

AgentLogin al = new AgentLogin();

al.Show();

this.Hide();

}

Distributor code

using System;

using System.Collections.Generic;
using System.ComponentModel,;
using System.Data;

using System.Drawing;

/lusing System.Ling;

71

Monitoring for Detection & Prevention of Fake Agents

using System.Text;

using System.Windows.Forms;
using System.Configuration;
namespace dataleakage

{

public partial class DistributorMain : Form

{
public DistributorMain()

InitializeComponent();

private void Form3_Load(object sender, EventArgs e)
{
DistributorLogin f1 = new DistributorLogin();
f1.Close();

private void buttonl_Click(object sender, EventArgs e)
{
AgentSignup asign=new AgentSignup();
asign.Show();
this.Hide();
}

private void btnclose_Click(object sender, EventArgs e)

{

Welcome w = new Welcome();
w.Show();
this.Hide();

72

Monitoring for Detection & Prevention of Fake Agents

private void btndistribute_Click(object sender, EventArgs e)
{
DistributeDataMenu dm = new DistributeDataMenu();
dm.Show();
this.Hide();

private void btnguilt_Click(object sender, EventArgs e)
{

GuiltModel gm = new GuiltModel();

gm.Show();

this.Hide();

SQL Connection Code

using System;

using System.Collections.Generic;
using System.Text;

using System.Data.SqlClient;

using System.Configuration;

namespace dataleakage

{

class SqlConn

{

public SglConnection cn;
public void open()

73

Monitoring for Detection & Prevention of Fake Agents

cn = new
SqlConnection(ConfigurationSettings.AppSettings["dataleakage]. ToString());
cn.Open();

}

public void close()

{

cn.Close();

}

ASP Code for DLD

<?xml version="1.0" encoding="utf-8"?>

<Project DefaultTargets="Build" xmIns="http://schemas.microsoft.com/developer/msbuild/2003"

ToolsVersion="4.0">

<PropertyGroup>
<Configuration Condition=""$(Configuration)' == " ">Debug</Configuration>
<Platform Condition=""$(Platform)' == " ">AnyCPU</Platform>

<ProductVersion>9.0.30729</ProductVersion>
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{BA69E414-EAF7-4D89-BB21-227E52FCC348}</ProjectGuid>
<OutputType>WinExe</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>Trust</RootNamespace>
<AssemblyName>Trust</AssemblyName>
<FileUpgradeFlags>

</FileUpgradeFlags>

<UpgradeBackupLocation>
</UpgradeBackupLocation>
<OldToolsVersion>3.5</OldToolsVersion>

74

http://schemas.microsoft.com/developer/msbuild/2003

Monitoring for Detection & Prevention of Fake Agents

<IsWebBootstrapper>true</IsWebBootstrapper>
<TargetFrameworkVersion>v2.0</TargetFrameworkVersion>
<PublishUrl>http://localhost/Trust/</PublishUrl>

<Install>true</Install>

<InstallFrom>Web</InstallFrom>
<UpdateEnabled>true</UpdateEnabled>
<UpdateMode>Foreground</UpdateMode>
<Updatelnterval>7</Updatelnterval>
<UpdatelntervalUnits>Days</UpdatelntervalUnits>
<UpdatePeriodically>false</UpdatePeriodically>
<UpdateRequired>false</UpdateRequired>
<MapFileExtensions>true</MapFileExtensions>
<ApplicationRevision>0</ApplicationRevision>
<ApplicationVersion>1.0.0.%2a</ApplicationVersion>
<UseApplicationTrust>false</UseApplicationTrust>
<BootstrapperEnabled>true</BootstrapperEnabled>

</PropertyGroup>

<PropertyGroup Condition=""$(Configuration)|$(Platform)' == 'Debug|AnyCPU" ">
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<QutputPath>bin\Debug\</OutputPath>
<DefineConstants>DEBUG; TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>

</PropertyGroup>

<PropertyGroup Condition=""$(Configuration)|$(Platform)' == 'Release|AnyCPU" ">
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>

<QutputPath>bin\Release\</OutputPath>

75

http://localhost/Trust/

Monitoring for Detection & Prevention of Fake Agents

<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
</PropertyGroup>
<ltemGroup>
<Reference Include="GlassButton, Version=1.3.2.29932, Culture=neutral,
PublicKeyToken=2e983e6e44d23a4f, processorArchitecture=MSIL">
<SpecificVersion>False</SpecificVersion>
<HintPath>E:\ITDNWO01\glassbutton\GlassButton (demo)\GlassButton.dll</HintPath>
</Reference>
<Reference Include="System" />
<Reference Include="System.Data" />
<Reference Include="System.Deployment" />
<Reference Include="System.DirectoryServices" />
<Reference Include="System.Drawing" />
<Reference Include="System.Windows.Forms" />
<Reference Include="System.Xml" />
<Reference Include="ZedGraph, Version=5.1.5.28844, Culture=neutral,
PublicKeyToken=02a83chd123fcd60, processorArchitecture=MSIL">
<SpecificVersion>False</SpecificVersion>
<HintPath>..\zedgraph_dll_v515\zedgraph_dll_v5.1.5\ZedGraph.dlI</HintPath>
</Reference>
</ltemGroup>
<IltemGroup>
<Compile Include="AgentLogin.cs">
<SubType>Form</SubType>
</Compile>
<Compile Include="AgentLogin.designer.cs">
<DependentUpon>AgentLogin.cs</DependentUpon>
</Compile>

76

Monitoring for Detection & Prevention of Fake Agents

<Compile Include="AgentSignup.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="AgentSignup.designer.cs">
<DependentUpon>AgentSignup.cs</DependentUpon>

</Compile>

<Compile Include="DistributeDataMenu.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="DistributeDataMenu.designer.cs">
<DependentUpon>DistributeDataMenu.cs</DependentUpon>

</Compile>

<Compile Include="DistributorLogin.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="DistributorLogin.designer.cs">
<DependentUpon>DistributorLogin.cs</DependentUpon>

</Compile>

<Compile Include="DistributorMain.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="DistributorMain.designer.cs">
<DependentUpon>DistributorMain.cs</DependentUpon>

</Compile>

<Compile Include="Graph.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="Graph.Designer.cs">
<DependentUpon>Graph.cs</DependentUpon>

</Compile>

<Compile Include="GuiltModel.cs">

77

Monitoring for Detection & Prevention of Fake Agents

<SubType>Form</SubType>

</Compile>

<Compile Include="GuiltModel.Designer.cs">
<DependentUpon>GuiltModel.cs</DependentUpon>

</Compile>

<Compile Include="GuiltRole.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="GuiltRole.Designer.cs">
<DependentUpon>GuiltRole.cs</DependentUpon>

</Compile>

<Compile Include="sender.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="sender.Designer.cs">
<DependentUpon>sender.cs</DependentUpon>

</Compile>

<Compile Include="Program.cs" />

<Compile Include="Properties\AssemblyInfo.cs" />

<EmbeddedResource Include="AgentLogin.resx">
<DependentUpon>AgentLogin.cs</DependentUpon>
<SubType>Designer</SubType>

</EmbeddedResource>

<EmbeddedResource Include="AgentSignup.resx">
<DependentUpon>AgentSignup.cs</DependentUpon>
<SubType>Designer</SubType>

</EmbeddedResource>

<EmbeddedResource Include="DistributeDataMenu.resx">
<DependentUpon>DistributeDataMenu.cs</DependentUpon>
<SubType>Designer</SubType>

</EmbeddedResource>

78

Monitoring for Detection & Prevention of Fake Agents

<EmbeddedResource Include="DistributorLogin.resx">
<DependentUpon>DistributorLogin.cs</DependentUpon>
<SubType>Designer</SubType>

</EmbeddedResource>

<EmbeddedResource Include="DistributorMain.resx">
<DependentUpon>DistributorMain.cs</DependentUpon>
<SubType>Designer</SubType>

</EmbeddedResource>

<EmbeddedResource Include="Graph.resx">
<SubType>Designer</SubType>
<DependentUpon>Graph.cs</DependentUpon>

</EmbeddedResource>

<EmbeddedResource Include="GuiltModel.resx">
<SubType>Designer</SubType>
<DependentUpon>GuiltModel.cs</DependentUpon>

</EmbeddedResource>

<EmbeddedResource Include="GuiltRole.resx">
<SubType>Designer</SubType>
<DependentUpon>GuiltRole.cs</DependentUpon>

</EmbeddedResource>

<EmbeddedResource Include="sender.resx">
<SubType>Designer</SubType>
<DependentUpon>sender.cs</DependentUpon>

</EmbeddedResource>

<EmbeddedResource Include="Properties\Resources.resx">
<Generator>ResXFileCodeGenerator</Generator>
<LastGenOutput>Resources.Designer.cs</LastGenOutput>
<SubType>Designer</SubType>

</EmbeddedResource>

<EmbeddedResource Include="ViewData.resx">

<SubType>Designer</SubType>

79

Monitoring for Detection & Prevention of Fake Agents

<DependentUpon>ViewData.cs</DependentUpon>

</EmbeddedResource>

<EmbeddedResource Include="Welcome.resx">
<DependentUpon>Welcome.cs</DependentUpon>

</EmbeddedResource>

<Compile Include="Properties\Resources.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Resources.resx</DependentUpon>
<DesignTime>True</DesignTime>

</Compile>

<None Include="app.config">
<SubType>Designer</SubType>

</None>

<None Include="Properties\Settings.settings">
<Generator>SettingsSingleFileGenerator</Generator>
<LastGenOutput>Settings.Designer.cs</LastGenOutput>

</None>

<Compile Include="Properties\Settings.Designer.cs">
<AutoGen>True</AutoGen>
<DependentUpon>Settings.settings</DependentUpon>
<DesignTimeSharedInput>True</DesignTimeSharedInput>

</Compile>

<Compile Include="SqlConn.cs" />

<Compile Include="ViewData.cs">
<SubType>Form</SubType>

</Compile>

<Compile Include="ViewData.Designer.cs">
<DependentUpon>ViewData.cs</DependentUpon>

</Compile>

<Compile Include="Welcome.cs">

<SubType>Form</SubType>

80

Monitoring for Detection & Prevention of Fake Agents

</Compile>

<Compile Include="Welcome.Designer.cs">
<DependentUpon>Welcome.cs</DependentUpon>

</Compile>

</ltemGroup>
<ltemGroup>

<BootstrapperPackage Include="Microsoft.Net.Client.3.5">
<Visible>False</Visible>
<ProductName>.NET Framework 3.5 SP1 Client Profile</ProductName>
<Install>false</Install>

</BootstrapperPackage>

<BootstrapperPackage Include="Microsoft.Net.Framework.2.0">
<Visible>False</Visible>
<ProductName>.NET Framework 2.0 %28x86%29</ProductName>
<Install>true</Install>

</BootstrapperPackage>

<BootstrapperPackage Include="Microsoft.Net.Framework.3.0">
<Visible>False</Visible>
<ProductName>.NET Framework 3.0 %28x86%29</ProductName>
<Install>false</Install>

</BootstrapperPackage>

<BootstrapperPackage Include="Microsoft.Net.Framework.3.5">
<Visible>False</Visible>
<ProductName>.NET Framework 3.5</ProductName>
<Install>false</Install>

</BootstrapperPackage>

<BootstrapperPackage Include="Microsoft.Net.Framework.3.5.SP1">
<Visible>False</Visible>
<ProductName>.NET Framework 3.5 SP1</ProductName>
<Install>false</Install>

</BootstrapperPackage>

81

Monitoring for Detection & Prevention of Fake Agents

</ltemGroup>
<ltemGroup>

<None Include="Resources\apple-apple-1465730-1280-1024.jpg" />
</ltemGroup>
<ltemGroup>

<None Include="Resources\3d_Apple_Logo 102 2.jpg" />
</ltemGroup>
<ltemGroup>

<None Include="Resources\business_networking.jpg" />
</ltemGroup>
<ItemGroup>

<None Include="Resources\networking.jpg" />
</ltemGroup>
<IltemGroup>

<None Include="Resources\fantasy-background.jpg"” />
</ltemGroup>
<IltemGroup>

<None Include="Resources\background-1.jpg" />
</ltemGroup>
<ltemGroup>

<None Include="Resources\globe_sm.gif" />
</ltemGroup>
<ltemGroup>

<None Include="Resources\index.jpg" />
</ltemGroup>
<Import Project="$(MSBuildBinPath)\Microsoft. CSharp.targets" />
<!I-- To modify your build process, add your task inside one of the targets below and uncomment

it.
Other similar extension points exist, see Microsoft. Common.targets.

<Target Name="BeforeBuild">

</Target>

82

Monitoring for Detection & Prevention of Fake Agents

<Target Name="AfterBuild">
</Target>
>

</Project>

83

Monitoring for Detection & Prevention of Fake Agents

System Testing

7.1 Testing Methodologies

The software engineering process can be viewed as a spiral. Initially system engineering
defines the role of software and leads to software requirement analysis where the information
domain, functions, behavior, performance, constraints and validation criteria for software are
established. Moving inward along the spiral, we come to design and finally to coding. To develop
computer software we spiral in along streamlines that decrease the level of abstraction on each

turn.

A strategy for software testing may also be viewed in the context of the spiral. Unit testing
begins at the vertex of the spiral and concentrates on each unit of the software as implemented in
source code. Testing progress by moving outward along the spiral to integration testing, where the
focus is on the design and the construction of the software architecture. Talking another turn on
outward on the spiral we encounter validation testing where requirements established as part of
software requirements analysis are validated against the software that has been constructed.
Finally we arrive at system testing, where the software and other system elements are tested as a

whole.

WATER FALL MODEL

UNIT TESTING

A\ 4

MODULE TESTING

A

Component Testina 4[SUB-SYSTEM TESING Jﬁ

\ 4

4[SYSTEM TESTING
Intearation Testina

A 4

ACCEPTANCE TESTING

User Testing

Monitoring for Detection & Prevention of Fake Agents

Unit Testing

Unit testing focuses verification effort on the smallest unit of software design, the module.
The unit testing we have is white box oriented and some modules the steps are conducted in
parallel.

White Box Testing
This type of testing ensures that
e All independent paths have been exercised at least once
e All logical decisions have been exercised on their true and false sides
e All loops are executed at their boundaries and within their operational bounds
e Allinternal data structures have been exercised to assure their validity.

To follow the concept of white box testing we have tested each form .we have created
independently to verify that Data flow is correct, All conditions are exercised to check their

validity, All loops are executed on their boundaries.
Basic Path Testing

Established technique of flow graph with Cyclomatic complexity was used to derive test

cases for all the functions. The main steps in deriving test cases were:
Use the design of the code and draw correspondent flow graph.
Determine the Cyclomatic complexity of resultant flow graph, using formula:
V(G)=E-N+2 or
V(G)=P+1 or
V(G)=Number Of Regions
Where V(G) is Cyclomatic complexity,
E is the number of edges,
N is the number of flow graph nodes,

P is the number of predicate nodes.

85

Monitoring for Detection & Prevention of Fake Agents

Determine the basis of set of linearly independent paths.
Conditional Testing

In this part of the testing each of the conditions were tested to both true and false aspects.
And all the resulting paths were tested. So that each path that may be generate on particular

condition is traced to uncover any possible errors.
Data Flow Testing

This type of testing selects the path of the program according to the location of definition
and use of variables. This kind of testing was used only when some local variable were declared.
The definition-use chain method was used in this type of testing. These were particularly useful in

nested statements.
Loop Testing

In this type of testing all the loops are tested to all the limits possible. The following exercise

was adopted for all loops:

> All the loops were tested at their limits, just above them and just below them.

> All the loops were skipped at least once.

> For nested loops test the inner most loop first and then work outwards.

For concatenated loops the values of dependent loops were set with the help of connected loop.

Unstructured loops were resolved into nested loops or concatenated loops and tested as
above. Each unit has been separately tested by the development team itself and all the input have
been validated.

Integration Testing

Testing is done for each module. After testing all the modules, the modules are integrated
and testing of the final system is done with the test data, specially designed to show that the
system will operate successfully in all its aspects conditions. Thus the system testing is a

confirmation that all is correct and an opportunity to show the user that the system works.

The purpose of integration testing is to verify functional, performance and reliability
requirements placed on major design items. These “design items”, i.e. Assemblages (or groups of

86

Monitoring for Detection & Prevention of Fake Agents

units), are exercised through theor interfaces using black box testing, sucess and error cases being
simulated via appropriate parameter and data inputs. Simulated usage of shared data areas and
inter-process communication is tested and individual subsystems are exercised through their input

interface.

Test cases are constructed to test that all components with in assemblges interect correctly,
for example across procedure calls or process activations, and this is done after testing individual

modules, i.e. Unit testing.

The overall idea is a “building block™ approach, in which verified assemblages are added

to a verified base which is then used to support the integration testing of further assemblages.
7.2 Test Cases

Test cases for Distributor Login

Test case Input being checked Expected output

If password is not matched))
_ _ Password=confirm password | Mismatched password
with confirm password

) Password should have at least
1.password is empty Password length>6
6 characters

) _ User id should be
User id contains spaces) Blank space are not allowed
alphanumeric

87

Monitoring for Detection & Prevention of Fake Agents

Test case for Agent Signup

Test case Input being checked Expected output

1.Userld User id should be | Valid / Invalid

alphanumeric

2. User Name User name should be | Valid/ Invalid user name
alphabetic
3. AgenetPwd Passwordlenght>4 Password should have at least
4 charcter
4.Address address should be | Blank spaces also eligible

alphanumeric

5.Contact Number Contact number should be | Contact Number have at least
Number 10 Character

6. Contact Person Person name should be | Contact person name should
character be characters

Test case for Agent Login

Test case Input being checked Expected output
1. Agent Id Agent id should be|Agent id not selected.
alphanumeric Selected at least one id
2. UserName User Name should be | Valid/ Invalid user name
character
3. AgenetPwd Passwordlenght>4 Password should have at
least 4 charcter

88

Monitoring for Detection & Prevention of Fake Agents

Test case for Data Transfer To Agents

Test case Input being checked Expected output
1. Agent Id Agent id should be | Agent id not selected.
alphanumeric Selected at least one id
2.ServerIP Server IP should be | Valid/ Invalid IP

Alphanumeric

3. Work Group Name Group name Alphanumeric It’s valid work group name or

not

89

Monitoring for Detection & Prevention of Fake Agents

OUTPUT SCREENS

MONITORING FOR DETECTION & PREVENTION OF FAKE AGENTS

& Welcome

LOGIN AS
DISTRIBUTOR

LOGIN AS
AGENT

Figure 8.1.1 Output Screen for Welcome to

Monitoring For Detection & Prevention Of Fake Agents

90

Monitoring for Detection & Prevention of Fake Agents

DISTRIBUTOR LOGIN [D@I[E

DISTRIBUTOR

usER N

CANCEL

Figure 8.1.2 Output Screen for Distributor Login

91

Monitoring for Detection & Prevention of Fake Agents

EEl DISTRIBUTOR MAIN FUNCTIONS

DISTRIBUTOR FUNCTIONS

SIGN UP FOR NEW AGENTS DISTRIBUTED DATA

FINDING GUILT AGENTS BACK TO MAIN MENU

Figure 8.1.3 Output Screen for Distributor Functionalities

92

Monitoring for Detection & Prevention of Fake Agents

£l DISTRIBUTION OF DATA-MENU

DISTRIBUTION OF DATA - MENU

DISTRIBUTE DATA TO AGENTS VIEW DISTRIBUTED DATA
BACK TO DISTRIBUTOR MENU

Figure 8.1.4 Output Screen for Distribution Of Data — Menu

93

Monitoring for Detection & Prevention of Fake Agents

% DATA TRANSFER 1O AGENTS

~#8¥ DATA TRANSFER TO AGENTS

-

-
IP Address Diata Transfer
Host Name IP Address Work Group Name
NETIO 200.200.20...
NET4 200.200.20.. workgroup

ENTER AGENTID 1002

Server IP 20020020012
l TPLOAD C-'Documents and £

Figure 8.1.5 Output Screen for Distribute Data To Agent

94

Monitoring for Detection & Prevention of Fake Agents

AGENT SIGN UP

ENTER AGENT USER ID 1002

ENTER AGENT USER NAME ravi

ENTER AGENT PASSWORD i

ENTER AGENT NAME ravi

ENTER ADDRESS h:d ‘
ENTER CONTACT NUMBER 9836123740
ENTER CONTACT PERSON shiva

==

Figure 8.1.6 Output Screen for Sign Up For New Agent

95

Monitoring for Detection & Prevention of Fake Agents

AGENT LOGIN M=
AGENT
AGENT ID a001
USERNAME an
PASSWORD *x *|
SUBNMIOT RESET
CANCEL

Figure 8.1.7 Output Screen for Agent Login

96

Monitoring for Detection & Prevention of Fake Agents

8.2 Reports

= Guiltbodel

AGENT GUILT MODEL - GUILT AGENT DETECTION

FIND GUILT AGENT ’aﬂﬂz &

PROBABILITY FREQUENCY OF GUILT AGENT 0000254921 | CALCULATE

\ PROBABILITY DISTRIBUTION BACK

Figure 8.2.1 Report Screen For Finding Guilt Agent

97

Monitoring for Detection & Prevention of Fake Agents

2 RECIEVER THROUGH AGENT

Thet progzem can vansfer small fie

File receiving path: C:Documents
%60, 0,70, 0
Server Status: Rumning and waiting to receive file.
i o n

Figure 8.2.2 Report Screen For Receiver Through Agent

98

Monitoring for Detection & Prevention of Fake Agents

il RECIEVER THROUGH DISTRIBUTOR

This program can transfer small file.

[Select Receiving Path J
Start Server

File receiving path: D:\copy
Server Status: Running and waiting to receive file.

Figure 8.2.3 Report Screen For Recieverthrudistributor

99

Monitoring for Detection & Prevention of Fake Agents

¥ VIEW DATA]

RECORDS OF DISTRIBUTED DATA

AgentlD AgentlP AgentFilePath
h 19216813 C\ajaldoo
a0z 192168.1.9 C:hDocuments a...
al03 132168111 C:ADocuments a...

5003 192.168.1.9 CADocuments a...
123 200.200.200.10

C:ADocuments a...

BACK TO DATA DISTRIBUTION MENU

Figure 8.2.4 Report Screen For View Distributed Data

100

Monitoring for Detection & Prevention of Fake Agents

..
PROBABILITY DISTRIBUTION OF AGENT's DATA \

PROBABILITY DISTRIBUTION FUNCTION

G aaemda‘na
10 ¢ T 3
03 = e 5
e
LR - 3
S oEd
g ~ : 3
w E
X
< U
w
i3
b
0. e
oo £ ;
0 2 3 4 5
AGENT FREQUENCY

BACE TO DISTRIBUTOR MENU

Figure 8.2.5 Report Screen For Probability Distribution

101

Monitoring for Detection & Prevention of Fake Agents

% DISTRIBUTION OF DATA BY AGENTS

DISTRIBUTION OF DATA BY AGENTS

AGENTS

Enrer Transfer (' Documents and] UPLOAD |

|

"SERD | |"CANCTT. |

Figure 8.26 Output & Report Screen For Distribution Of Data By Agent

Success

Figure 8.2.7 Successful Of The Distribution

102

Monitoring for Detection & Prevention of Fake Agents

Conclusion & Future Enhancement

9.1 Conclusion

In a perfect world, there would be no need to hand over sensitive data to agents that may
unknowingly or maliciously leak it. And even if we had to hand over sensitive data, in a perfect
world, we could watermark each object so that we could trace its origins with absolute certainty.
However, in many cases, we must indeed work with agents that may not be 100 percent trusted,
and we may not be certain if a leaked object came from an agent or from some other source, since
certain data cannot admit watermarks. In spite of these difficulties, we have shown that it is
possible to assess the likelihood that an agent is responsible for a leak, based on the overlap of his
data with the leaked data and the data of other agents, and based on the probability that objects can

be “guessed” by other means.

9.2 Future Enhancement

Our model is relatively simple, but we believe that it captures the essential trade-offs. The
algorithms we have presented implement a variety of data distribution strategies that can improve
the distributor’s chances of identifying a leaker. We have shown that distributing objects
judiciously can make a significant difference in identifying guilty agents, especially in cases

where there is large overlap in the data that agents must receive.

Our future work includes the investigation of agent guilt models that capture leakage
scenarios that are not studied in this project. For example, what is the appropriate model for cases
where agents can collude and identify fake tuples? Another open problem is the extension of our
allocation strategies so that they can handle agent requests in an online fashion (the presented

strategies assume that there is a fixed set of agents with requests known in advance).

103

ACRONYM

DLD

GA

AGM

DA

GMA

FO

FT

DR

EF

SF

SR

ER

CFO

IGP

EGP

IGRP

VLSM

PL

LL

NL

TL

Monitoring for Detection & Prevention of Fake Agents

Glossary

ABBREVATION

Data Leakage Detection

Guilty Agent

Agent Guilt Model

Data Allocation

Guilt Model Analysis

Fake Objects

Fake Tuple

Data Request

Explicit Fake Object

Simple Fake Object

Simple Request

Explicit Request

Create Fake Object

Internet Grouping Protocol
Exterior Gateway Protocol
Interior Gateway Routing Protocol
Variable Length Subnet Masking
Physical Layer

Link Layer

Network Layer

Transport Layer

104

SL
PL
AL
NIDS
SSL
HTTP
FTP
DMZ
SMTP
POP3
PP
SQL
EGP
IGMP
MBGP
RIP
MTU
RFC
MLD
PIM
IETF
ICMP
EIGRP

oMT

Monitoring for Detection & Prevention of Fake Agents

Session Layer

Presentation Layer

Application Layer

Network Instruction Detection System
Secure Socket Layer

Hyper Text Transfer Protocol

File Transfer Protocol

Demilitarized Zone

Simple Mail Transfer Protocol

Post Office Protocol version 3
Pre-Pishing

Structured Query Language

Exterior Gateway Protocol

Internet Group Management Protocol
Multiprotocol Extension for BGP
Routing Information Protocol
Maximum Transmission Unit
Request For Comment

Multicast Listener Discovery
Protocol Independent Multicast
Internet Engineering Task Force
Internet Control Message Protocol
Enhanced Interior Gateway Routing Protocol

Object Modelling Technique

105

Monitoring for Detection & Prevention of Fake Agents

NSFNet National Science Foundation Network

ARPANet Advanced Research Project Agency Network

106

Monitoring for Detection & Prevention of Fake Agents

References

[1]. SANS Institute InfoSec Reading Room This Project is from the SANS Institute Reading Room site.

Reposting is not permitted without express written permission. Data Leakage - Threats and Mitigation
[2]. Medical data mining: insights from winning two competitions by Saharon Rosset - Claudia Perlich -
Grzergorz Swirszcz - Prem Melville - Yan Liu

[3]. Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline
System by sang — Hyun Kim* Environmental Engineering, Pusan National University, Geumjeng-gu,
busann 609-735, korea. “It's a Journal of Mechanical Science and Technology (KSME Int. J), Vol.20, No. 3
PP 426-434, 2006~

[4]. A Literature Review of Domain Adaptation with Unlabeled Data by Anna Margolis

amargoli@u.washington.edu March 23, 2011

[5]. R. Agrawal and J. Kiernan, “Watermarking Relational Databases,” Proc. 28th Int’l Conf. Very Large
Data Bases (VLDB ’02), VLDB Endowment, pp. 155-166, 2002.

[6]. P. Bonatti, S.D.C. di Vimercati, and P. Samarati, “An Algebra for Composing Access Control
Policies,” ACM Trans. Information and System Security, vol. 5, no. 1, pp. 1-35, 2002.

[7]. P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A Characterization of Data Provenance,”
Proc. Eighth Int’l Conf. Database Theory (ICDT °01), J.V. den Bussche and V. Vianu, eds., pp. 316-330,
Jan. 2001.

[8]. P. Buneman and W.-C. Tan, “Provenance in Databases,” Proc. ACM SIGMOD, pp. 1171-1173, 2007.

[9]. Y. Cui and J. Widom, “Lineage Tracing for General Data Warehouse Transformations,” The VLDB J.,
vol. 12, pp. 41-58, 2003.

[10]. S . Czerwinski, R. Fromm, and T. Hodes, “Digital Music Distributionand Audio Watermarking,”
http://www.scientificcommons.org/43025658, 2007.

[11]. F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li, “An Improved Algorithm to Watermark Numeric
Relational Data,” Information Security Applications, pp. 138-149, Springer, 2006.

[12]. F. Hartung and B. Girod, “Watermarking of Uncompressed and Compressed Video,” Signal
Processing, vol. 66, no. 3, pp. 283-301, 1998.

107

mailto:amargoli@u.washington.edu

Monitoring for Detection & Prevention of Fake Agents

[13]. S.Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian, “Flexible Support for Multiple Access
Control Policies,” ACM Trans. Database Systems, vol. 26, no. 2, pp. 214-260, 2001.

[14]. Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting Relational Databases: Schemes and Specialties,”
IEEE Trans. Dependable and Secure Computing, vol. 2, no. 1, pp. 34-45, Jan.-Mar. 2005.

[15]. B. Mungamuru and H. Garcia-Molina, “Privacy, Preservation and Performance: The 3 P’s of

Distributed Data Management,” technical report, Stanford Univ., 2008.

[16]. V.N. Murty, “Counting the Integer Solutions of a Linear Equation with Unit Coefficients,” Math.
Magazine, vol. 54, no. 2, pp. 79-81, 1981.

[17]. S.U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani, “Towards Robustness in Query
Auditing,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB ’06), VLDB Endowment, pp. 151-162,
2006.

[18]. P. Papadimitriou and H. Garcia-Molina, “Data Leakage Detec- tion,” technical report, Stanford
Univ., 2008.

[19]. P.M. Pardalos and S.A. Vavasis, “Quadratic Programming with One Negative Eigenvalue Is NP-
Hard,” J. Global Optimization, vol. 1, no. 1, pp. 15-22, 1991.

[20] . J.J.K.O. Ruanaidh, W.J. Dowling, and F.M. Boland, “Watermark- ing Digital Images for Copyright
Protection,” IEE Proc. Vision, Signal and Image Processing, vol. 143, no. 4, pp. 250-256, 1996.

[21]. R. Sion, M. Atallah, and S. Prabhakar, “Rights Protection for Relational Data,” Proc. ACM SIGMOD,
pp. 98-109, 2003.

[22]. L. Sweeney, “Achieving K-Anonymity Privacy Protection Using Generalization and Suppression,”
http://en.scientificcommons. org/43196131, 2002.

FOR .NET INSTALLATION

[1]. www.support.mircosoft.com

FOR DEPLOYMENT AND PACKING ON SERVER
[2]. www.developer.com

[3]. www.15seconds.com

FOR SQL

[4]. www.msdn.microsoft.com

108

http://www.support.mircosoft.com/
http://www.developer.com/
http://www.15seconds.com/
http://www.msdn.microsoft.com/

Monitoring for Detection & Prevention of Fake Agents

FOR ASP.NET

Asp.Net 3.5 Unleashed

[5]. www.msdn.microsoft.com/net/quickstart/aspplus/default.com
[6]. www.asp.net

[7]. www.fmexpense.com/quickstart/aspplus/default.com

[8]. www.asptoday.com

[9]. www.aspfree.com

[10]. www.4guysfromrolla.com/index.aspx

- Software Engineering (Roger’s Pressman)

109

http://www.msdn.microsoft.com/net/quickstart/aspplus/default.com
http://www.asp.net/
http://www.fmexpense.com/quickstart/aspplus/default.com
http://www.asptoday.com/
http://www.aspfree.com/
http://www.4guysfromrolla.com/index.aspx

Monitoring for Detection & Prevention of Fake Agents

Index of List Of Figures

S.no Figure no Content Page no
1 1.1 Diagram for Email Security Control 5
2 1.2 Diagram for Gas Leakage 6
3 1.3 Model Diagram for IP-3 Demo Leakage 6
4 2.3.1 Instant Messaging Data Leakage Vector 10
5 2.3.2 Email Data Leakage Vector 11
6 2.3.3 FTP Data Leakage Vector 13
7 2.4.1 Malware Data Leakage Vector 16
8 2.4.2 Phishing site Activity 17
9 2.4.3 State full inspection Firewall Conceptual diagram 19
10 2.4.4 SSL Proxy Conceptual diagram 19
11 2.4.5 SSL Proxy conceptual Diagram 20
12 2.6.1 Visual Overview of the CLI 23
13 2.6.2 .NET Framework stack 25
14 53.1 Overall use case diagram for MFDPFA 55
15 532 Use Diagram for Agent login 56
16 5.3.3 Use case diagram for Agent 57
17 5.3.4 Use case diagram for distributor 58
18 5.35 Use case diagram for receiver through agent 58
19 5.3.6 Use case diagram for data transfer to agents 59
20 5.3.7 Sequence diagram for data transfer to agents 60
21 5.3.8 Collaboration diagram for data transfer to agent 60
) 539 Sequence Diagram for Receiver path 61
23 5.3.10 Sequence Diagram for Data Transfer to Agents 61
24 5311 Sequence Diagram for Agents Guilt Model 62
o5 5312 Sequence Diagram for Agent Sign Up 62

Sequence Diagram for Distributed to data & view
26 5313 | data 63
27 53.14 Sequence Diagram for Distributor Functions 63
28 5.3.15 Over all Class diagram 64
29 53.16 Class diagram for Receiver through agent 65
30 5.3.17 Class diagram fot@Receiver through Distributor 65
31 5.3.18 Flowchart for Data Transfer from Distributor to 66

Monitoring for Detection & Prevention of Fake Agents

Agents

Activity Diagram for Data Transfer from
32 5.3.19 Distributor to Agents 67
33 53920 Flow Chart for Data Transfer from Distributor to 68

Agents
34 8.1.1 Output screen for MFDPFA 90
35 8.1.2 Output Screen for Distributor Login 91
36 8.1.3 Output Screen for Distributor Functionalities 92
37 8.14 Output Screen for Distribution Of Data — Menu 93
38 8.1.5 Output Screen for Distribute Data To Agent 94
39 8.1.6 Output Screen for Sign Up For New Agent 95
40 817 Output Screen for Agent Login 96
41 8.2.1 Report Screen For Finding Guilt Agent 97
42 822 Report Screen For Receiver Through Agent 98
43 8.2.3 Report Screen For Receiver Through distributor 99
44 8.2.4 Report Screen For View Distributed Data 100
45 8.2.5 Report Screen For Probability Distribution 101
16 826 Output & Report Screen For Distribution Of Data 102

By Agent
47 8.2.7 Successful Of The Distribution 102

111

Monitoring for Detection & Prevention of Fake Agents

Tables Index
S.no Table No Table Name Page No
1 2.6.1 .Net Version Table 26
2 53.1 Guilt probability 68
3 5.3.2 Guilt agent 68
4 5.3.3 Agent signup 68
5 534 Agent record 68

112

Monitoring for Detection & Prevention of Fake Agents

PUBLICATIONS

[1] Monitor For Detection & Prevention of Fake Agents has been published by Intenational Journal Of
Computer Science Trends and Technology (IJCTT) in July — august 2012, by K.SUDHEER KUAMR',
CH.S.V.V.S.N MURTY?

[2] Published “Releaving of Leakage Information™ at International Conference On Recent Advaces In
Computer Science 2012 (ICRACS2K12) at Godavari Institute Of Engineering & Technology during 30"-
31% March -2012.

'PG Student, Department of CSE, Sri Sai Aditya Institute Of Science & Technology, Surampalem,

Andhra Pradesh, India. sudheerkumarkotha@gmail.com, chsatyamurthy@gmail.com.

113

mailto:sudheerkumarkotha@gmail.com
mailto:chsatyamurthy@gmail.com

